AFIMNet:用于遥感场景分类的自适应特征交互网络

IF 4.4
Xiao Wang;Yisha Sun;Pan He
{"title":"AFIMNet:用于遥感场景分类的自适应特征交互网络","authors":"Xiao Wang;Yisha Sun;Pan He","doi":"10.1109/LGRS.2025.3607205","DOIUrl":null,"url":null,"abstract":"Convolutional neural network (CNN)-based methods have been widely applied in remote sensing scene classification (RSSC) and have achieved remarkable classification results. However, traditional CNN methods have certain limitations in extracting global features and capturing image semantics, especially in complex remote sensing (RS) image scenes. The Transformer can directly capture global features through the self-attention mechanism, but its performance is weaker when handling local details. Currently, methods that directly combine CNN and transformer features lead to feature imbalance and introduce redundant information. To address these issues, we propose AFIMNet, an adaptive feature interaction network for RSSC. First, we use a dual-branch network structure (based on ResNet34 and Swin-S) to extract local and global features from RS scene images. Second, we design an adaptive feature interaction module (AFIM) that effectively enhances the interaction and correlation between local and global features. Third, we use a spatial-channel fusion module (SCFM) to aggregate the interacted features, further strengthening feature representation capabilities. Our proposed method is validated on three public RS datasets, and experimental results show that AFIMNet has a stronger feature representation ability compared to current popular RS image classification methods, significantly improving classification accuracy. The source code will be publicly accessible at <uri>https://github.com/xavi276310/AFIMNet</uri>","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AFIMNet: An Adaptive Feature Interaction Network for Remote Sensing Scene Classification\",\"authors\":\"Xiao Wang;Yisha Sun;Pan He\",\"doi\":\"10.1109/LGRS.2025.3607205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural network (CNN)-based methods have been widely applied in remote sensing scene classification (RSSC) and have achieved remarkable classification results. However, traditional CNN methods have certain limitations in extracting global features and capturing image semantics, especially in complex remote sensing (RS) image scenes. The Transformer can directly capture global features through the self-attention mechanism, but its performance is weaker when handling local details. Currently, methods that directly combine CNN and transformer features lead to feature imbalance and introduce redundant information. To address these issues, we propose AFIMNet, an adaptive feature interaction network for RSSC. First, we use a dual-branch network structure (based on ResNet34 and Swin-S) to extract local and global features from RS scene images. Second, we design an adaptive feature interaction module (AFIM) that effectively enhances the interaction and correlation between local and global features. Third, we use a spatial-channel fusion module (SCFM) to aggregate the interacted features, further strengthening feature representation capabilities. Our proposed method is validated on three public RS datasets, and experimental results show that AFIMNet has a stronger feature representation ability compared to current popular RS image classification methods, significantly improving classification accuracy. The source code will be publicly accessible at <uri>https://github.com/xavi276310/AFIMNet</uri>\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11153448/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11153448/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于卷积神经网络(CNN)的方法在遥感场景分类(RSSC)中得到了广泛的应用,并取得了显著的分类效果。然而,传统的CNN方法在提取全局特征和捕获图像语义方面存在一定的局限性,特别是在复杂的遥感图像场景中。Transformer可以通过自关注机制直接捕获全局特征,但在处理局部细节时,其性能较弱。目前,将CNN与变压器特征直接结合的方法会导致特征不平衡,引入冗余信息。为了解决这些问题,我们提出了一种用于RSSC的自适应特征交互网络AFIMNet。首先,我们使用双分支网络结构(基于ResNet34和swan - s)从RS场景图像中提取局部和全局特征。其次,设计了自适应特征交互模块(AFIM),有效增强了局部特征与全局特征之间的交互和相关性。第三,利用空间信道融合模块(SCFM)对交互特征进行聚合,进一步增强特征表示能力。我们提出的方法在三个公开的RS数据集上进行了验证,实验结果表明,与目前流行的RS图像分类方法相比,AFIMNet具有更强的特征表示能力,显著提高了分类精度。源代码可以在https://github.com/xavi276310/AFIMNet上公开访问
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AFIMNet: An Adaptive Feature Interaction Network for Remote Sensing Scene Classification
Convolutional neural network (CNN)-based methods have been widely applied in remote sensing scene classification (RSSC) and have achieved remarkable classification results. However, traditional CNN methods have certain limitations in extracting global features and capturing image semantics, especially in complex remote sensing (RS) image scenes. The Transformer can directly capture global features through the self-attention mechanism, but its performance is weaker when handling local details. Currently, methods that directly combine CNN and transformer features lead to feature imbalance and introduce redundant information. To address these issues, we propose AFIMNet, an adaptive feature interaction network for RSSC. First, we use a dual-branch network structure (based on ResNet34 and Swin-S) to extract local and global features from RS scene images. Second, we design an adaptive feature interaction module (AFIM) that effectively enhances the interaction and correlation between local and global features. Third, we use a spatial-channel fusion module (SCFM) to aggregate the interacted features, further strengthening feature representation capabilities. Our proposed method is validated on three public RS datasets, and experimental results show that AFIMNet has a stronger feature representation ability compared to current popular RS image classification methods, significantly improving classification accuracy. The source code will be publicly accessible at https://github.com/xavi276310/AFIMNet
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信