基于变化感知和傅立叶特征交换网络的遥感影像耕地变化检测

IF 4.4
Min Duan;Yuanxu Wang;Lu Bai;Yujiang He;Zhichao Zhao;Yurong Qian;Xuanchen Liu
{"title":"基于变化感知和傅立叶特征交换网络的遥感影像耕地变化检测","authors":"Min Duan;Yuanxu Wang;Lu Bai;Yujiang He;Zhichao Zhao;Yurong Qian;Xuanchen Liu","doi":"10.1109/LGRS.2025.3602854","DOIUrl":null,"url":null,"abstract":"The accelerated nonagriculturalization of cropland has increasingly highlighted the importance of remote sensing (RS) change detection (CD) for monitoring land-use transitions. However, variations in RS imaging conditions and irregular cropland changes often result in noisy or inaccurate change maps. To address these challenges, we propose a novel deep learning framework named change-aware and Fourier feature exchange network (CAFENet). The method introduces a dedicated change-aware (CA) branch to extract discriminative change cues from pseudo-video sequences and integrates them into the backbone network. A Fourier feature exchange module (FFEM) is designed to reduce brightness, color, and style discrepancies between bitemporal images, thereby enhancing robustness under varying acquisition conditions. Fused features are further refined using an efficient multiscale attention mechanism (EMSA) to capture rich spatial details. In the decoding stage, a dynamic content-aware upsampling module (DCAU), together with skip connections, progressively recovers spatial resolution while preserving structural information. The experimental results on three datasets—CLCD, SW-CLCD, and LuojiaSET-CLCD—demonstrate that CAFENet achieves superior performance over state-of-the-art methods in terms of both accuracy and robustness, particularly in complex agricultural landscapes.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CAFENet: Change-Aware and Fourier Feature Exchange Network for Cropland Change Detection in Remote Sensing Images\",\"authors\":\"Min Duan;Yuanxu Wang;Lu Bai;Yujiang He;Zhichao Zhao;Yurong Qian;Xuanchen Liu\",\"doi\":\"10.1109/LGRS.2025.3602854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accelerated nonagriculturalization of cropland has increasingly highlighted the importance of remote sensing (RS) change detection (CD) for monitoring land-use transitions. However, variations in RS imaging conditions and irregular cropland changes often result in noisy or inaccurate change maps. To address these challenges, we propose a novel deep learning framework named change-aware and Fourier feature exchange network (CAFENet). The method introduces a dedicated change-aware (CA) branch to extract discriminative change cues from pseudo-video sequences and integrates them into the backbone network. A Fourier feature exchange module (FFEM) is designed to reduce brightness, color, and style discrepancies between bitemporal images, thereby enhancing robustness under varying acquisition conditions. Fused features are further refined using an efficient multiscale attention mechanism (EMSA) to capture rich spatial details. In the decoding stage, a dynamic content-aware upsampling module (DCAU), together with skip connections, progressively recovers spatial resolution while preserving structural information. The experimental results on three datasets—CLCD, SW-CLCD, and LuojiaSET-CLCD—demonstrate that CAFENet achieves superior performance over state-of-the-art methods in terms of both accuracy and robustness, particularly in complex agricultural landscapes.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11141788/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11141788/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着耕地非农化进程的加快,遥感变化检测对土地利用变化监测的重要性日益凸显。然而,RS成像条件的变化和不规则的农田变化往往导致嘈杂或不准确的变化图。为了解决这些挑战,我们提出了一种新的深度学习框架,称为变化感知和傅立叶特征交换网络(CAFENet)。该方法引入了一个专用的变化感知(CA)分支,从伪视频序列中提取判别变化线索,并将其集成到骨干网中。傅里叶特征交换模块(FFEM)的目的是减少亮度,颜色和双时间图像之间的风格差异,从而增强在不同的采集条件下的鲁棒性。使用高效的多尺度注意机制(EMSA)进一步细化融合特征,以捕获丰富的空间细节。在解码阶段,动态内容感知上采样模块(DCAU)与跳跃连接一起,在保留结构信息的同时逐步恢复空间分辨率。在clcd、SW-CLCD和罗家set - clcd三个数据集上的实验结果表明,CAFENet在准确性和鲁棒性方面都优于最先进的方法,特别是在复杂的农业景观中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CAFENet: Change-Aware and Fourier Feature Exchange Network for Cropland Change Detection in Remote Sensing Images
The accelerated nonagriculturalization of cropland has increasingly highlighted the importance of remote sensing (RS) change detection (CD) for monitoring land-use transitions. However, variations in RS imaging conditions and irregular cropland changes often result in noisy or inaccurate change maps. To address these challenges, we propose a novel deep learning framework named change-aware and Fourier feature exchange network (CAFENet). The method introduces a dedicated change-aware (CA) branch to extract discriminative change cues from pseudo-video sequences and integrates them into the backbone network. A Fourier feature exchange module (FFEM) is designed to reduce brightness, color, and style discrepancies between bitemporal images, thereby enhancing robustness under varying acquisition conditions. Fused features are further refined using an efficient multiscale attention mechanism (EMSA) to capture rich spatial details. In the decoding stage, a dynamic content-aware upsampling module (DCAU), together with skip connections, progressively recovers spatial resolution while preserving structural information. The experimental results on three datasets—CLCD, SW-CLCD, and LuojiaSET-CLCD—demonstrate that CAFENet achieves superior performance over state-of-the-art methods in terms of both accuracy and robustness, particularly in complex agricultural landscapes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信