机器学习技术在建筑维护中的应用:战略分析

IF 4.9
Assane Lo , Aysha Alshehhi
{"title":"机器学习技术在建筑维护中的应用:战略分析","authors":"Assane Lo ,&nbsp;Aysha Alshehhi","doi":"10.1016/j.mlwa.2025.100731","DOIUrl":null,"url":null,"abstract":"<div><div>Current predictive maintenance systems in construction rely on static machine learning approaches that fail to adapt to evolving operational environments, achieving only 3%–7% performance improvements over individual models and suffering 15%–25% performance degradation when transferred across domains. This research develops and validates an Adaptive Ensemble Framework that dynamically optimizes algorithm selection through real-time data assessment and performance feedback.</div><div>The framework’s meta-learning architecture continuously adapts ensemble weights using data complexity measures, temporal pattern analysis, and uncertainty quantification metrics. Unlike static approaches, the system integrates scikit-learn and TensorFlow models through dynamic optimization algorithms that respond to changing conditions without manual reconfiguration. The framework provides uncertainty-aware predictions with confidence intervals essential for safety-critical construction decisions.</div><div>Comprehensive evaluation across four industries using 50,000+ maintenance records from major construction firms demonstrates substantial improvements. The adaptive ensemble achieves F1-score of 0.934 in construction delay prediction, representing 15.3% improvement over individual models and 8.7% enhancement over static ensembles. Cross-industry validation reveals successful knowledge transfer with minimal performance degradation (<span><math><mo>&lt;</mo></math></span>5%).</div><div>This research contributes three scholarly advances: (i) the first real-time adaptive ensemble framework eliminating manual hyperparameter tuning, (ii) uncertainty quantification mechanisms for safety-critical applications, and (iii) robust cross-industry transferability through systematic domain adaptation. The framework extends beyond construction to manufacturing, energy, and transportation sectors, demonstrating computational efficiency with sub-100ms latency and linear scaling characteristics. These contributions establish new benchmarks for adaptive machine learning in industrial predictive maintenance.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"22 ","pages":"Article 100731"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of machine learning technologies in construction maintenance: A strategic analysis\",\"authors\":\"Assane Lo ,&nbsp;Aysha Alshehhi\",\"doi\":\"10.1016/j.mlwa.2025.100731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Current predictive maintenance systems in construction rely on static machine learning approaches that fail to adapt to evolving operational environments, achieving only 3%–7% performance improvements over individual models and suffering 15%–25% performance degradation when transferred across domains. This research develops and validates an Adaptive Ensemble Framework that dynamically optimizes algorithm selection through real-time data assessment and performance feedback.</div><div>The framework’s meta-learning architecture continuously adapts ensemble weights using data complexity measures, temporal pattern analysis, and uncertainty quantification metrics. Unlike static approaches, the system integrates scikit-learn and TensorFlow models through dynamic optimization algorithms that respond to changing conditions without manual reconfiguration. The framework provides uncertainty-aware predictions with confidence intervals essential for safety-critical construction decisions.</div><div>Comprehensive evaluation across four industries using 50,000+ maintenance records from major construction firms demonstrates substantial improvements. The adaptive ensemble achieves F1-score of 0.934 in construction delay prediction, representing 15.3% improvement over individual models and 8.7% enhancement over static ensembles. Cross-industry validation reveals successful knowledge transfer with minimal performance degradation (<span><math><mo>&lt;</mo></math></span>5%).</div><div>This research contributes three scholarly advances: (i) the first real-time adaptive ensemble framework eliminating manual hyperparameter tuning, (ii) uncertainty quantification mechanisms for safety-critical applications, and (iii) robust cross-industry transferability through systematic domain adaptation. The framework extends beyond construction to manufacturing, energy, and transportation sectors, demonstrating computational efficiency with sub-100ms latency and linear scaling characteristics. These contributions establish new benchmarks for adaptive machine learning in industrial predictive maintenance.</div></div>\",\"PeriodicalId\":74093,\"journal\":{\"name\":\"Machine learning with applications\",\"volume\":\"22 \",\"pages\":\"Article 100731\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning with applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666827025001148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025001148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前构建中的预测性维护系统依赖于静态机器学习方法,无法适应不断变化的操作环境,相对于单个模型,只能实现3%-7%的性能提升,跨域转移时性能下降15%-25%。本研究开发并验证了一个自适应集成框架,该框架通过实时数据评估和性能反馈动态优化算法选择。该框架的元学习架构使用数据复杂性度量、时间模式分析和不确定性量化度量不断地调整集成权重。与静态方法不同,该系统通过动态优化算法集成scikit-learn和TensorFlow模型,无需手动重新配置即可响应不断变化的条件。该框架提供了具有不确定性的预测,其置信区间对于安全关键的施工决策至关重要。使用来自主要建筑公司的50,000多个维护记录对四个行业进行综合评估,显示出实质性的改进。自适应集成在施工延误预测中的得分为f1 - 0.934,比单个模型提高15.3%,比静态集成提高8.7%。跨行业验证揭示了成功的知识转移与最小的性能下降(<5%)。这项研究贡献了三个学术进展:(i)第一个实时自适应集成框架,消除了手动超参数调整;(ii)安全关键应用的不确定性量化机制;(iii)通过系统领域适应实现强大的跨行业可转移性。该框架从建筑扩展到制造、能源和运输部门,展示了低于100ms的延迟和线性缩放特性的计算效率。这些贡献为工业预测性维护中的自适应机器学习建立了新的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of machine learning technologies in construction maintenance: A strategic analysis
Current predictive maintenance systems in construction rely on static machine learning approaches that fail to adapt to evolving operational environments, achieving only 3%–7% performance improvements over individual models and suffering 15%–25% performance degradation when transferred across domains. This research develops and validates an Adaptive Ensemble Framework that dynamically optimizes algorithm selection through real-time data assessment and performance feedback.
The framework’s meta-learning architecture continuously adapts ensemble weights using data complexity measures, temporal pattern analysis, and uncertainty quantification metrics. Unlike static approaches, the system integrates scikit-learn and TensorFlow models through dynamic optimization algorithms that respond to changing conditions without manual reconfiguration. The framework provides uncertainty-aware predictions with confidence intervals essential for safety-critical construction decisions.
Comprehensive evaluation across four industries using 50,000+ maintenance records from major construction firms demonstrates substantial improvements. The adaptive ensemble achieves F1-score of 0.934 in construction delay prediction, representing 15.3% improvement over individual models and 8.7% enhancement over static ensembles. Cross-industry validation reveals successful knowledge transfer with minimal performance degradation (<5%).
This research contributes three scholarly advances: (i) the first real-time adaptive ensemble framework eliminating manual hyperparameter tuning, (ii) uncertainty quantification mechanisms for safety-critical applications, and (iii) robust cross-industry transferability through systematic domain adaptation. The framework extends beyond construction to manufacturing, energy, and transportation sectors, demonstrating computational efficiency with sub-100ms latency and linear scaling characteristics. These contributions establish new benchmarks for adaptive machine learning in industrial predictive maintenance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信