纳米尺度下多场约束下铁电体相变行为的表征

IF 5.6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xuhui Lou , Pan Liu , Xu Hou , Wentao Jiang , Qingyuan Wang , Jie Wang , Xiaobao Tian , Yingwei Li
{"title":"纳米尺度下多场约束下铁电体相变行为的表征","authors":"Xuhui Lou ,&nbsp;Pan Liu ,&nbsp;Xu Hou ,&nbsp;Wentao Jiang ,&nbsp;Qingyuan Wang ,&nbsp;Jie Wang ,&nbsp;Xiaobao Tian ,&nbsp;Yingwei Li","doi":"10.1016/j.scriptamat.2025.116991","DOIUrl":null,"url":null,"abstract":"<div><div>Multiphase ferroelectric-paraelectric composite systems have emerged as promising candidates for next-generation electromechanical devices. Accurately characterizing the response of embedded ferroelectrics under coupled multi-field constraints is essential for achieving breakthroughs in broader applications. In this paper, an indirect nanoindentation methodology is developed to investigate the ferroelectric behaviors under electro-thermal-mechanical constraints. We experimentally demonstrate unprecedented phase transition-mediated superelasticity in bulk ferroelectrics above the Curie temperature, achieving a 4200 nm recoverable indentation depth under 10 mN loading at 140 °C. Thermodynamic analyses reveal multi-field constraints serve as the dominant driving force behind this unconventional behavior. Through modulating the strength of interfacial multi-field constraints in ferroelectric-paraelectric phase composite systems, this work achieves macroscopic phase transition at room temperature. Quantitative composition-property correlations of multiphase ferroelectric-paraelectric composite systems are established and provide a valuable design database for energy storage optimization. The proposed materials-by-constraint strategy provides a generalizable design framework for tailoring material functional properties.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"271 ","pages":"Article 116991"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing the phase transition behavior of ferroelectrics with multi-field constraints at nano-scale\",\"authors\":\"Xuhui Lou ,&nbsp;Pan Liu ,&nbsp;Xu Hou ,&nbsp;Wentao Jiang ,&nbsp;Qingyuan Wang ,&nbsp;Jie Wang ,&nbsp;Xiaobao Tian ,&nbsp;Yingwei Li\",\"doi\":\"10.1016/j.scriptamat.2025.116991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multiphase ferroelectric-paraelectric composite systems have emerged as promising candidates for next-generation electromechanical devices. Accurately characterizing the response of embedded ferroelectrics under coupled multi-field constraints is essential for achieving breakthroughs in broader applications. In this paper, an indirect nanoindentation methodology is developed to investigate the ferroelectric behaviors under electro-thermal-mechanical constraints. We experimentally demonstrate unprecedented phase transition-mediated superelasticity in bulk ferroelectrics above the Curie temperature, achieving a 4200 nm recoverable indentation depth under 10 mN loading at 140 °C. Thermodynamic analyses reveal multi-field constraints serve as the dominant driving force behind this unconventional behavior. Through modulating the strength of interfacial multi-field constraints in ferroelectric-paraelectric phase composite systems, this work achieves macroscopic phase transition at room temperature. Quantitative composition-property correlations of multiphase ferroelectric-paraelectric composite systems are established and provide a valuable design database for energy storage optimization. The proposed materials-by-constraint strategy provides a generalizable design framework for tailoring material functional properties.</div></div>\",\"PeriodicalId\":423,\"journal\":{\"name\":\"Scripta Materialia\",\"volume\":\"271 \",\"pages\":\"Article 116991\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scripta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359646225004531\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646225004531","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多相铁电-准电复合系统已成为下一代机电器件的有前途的候选者。准确表征嵌入式铁电体在耦合多场约束下的响应对于实现更广泛应用的突破至关重要。本文提出了一种间接纳米压痕方法来研究电-热-机械约束下的铁电行为。我们通过实验证明了居里温度以上的体铁电体中前所未有的相变介导的超弹性,在140°C的10 mN载荷下实现了4200 nm的可恢复压痕深度。热力学分析表明,多场约束是这种非常规行为背后的主要驱动力。本文通过调制铁电-准电相复合体系中界面多场约束的强度,实现了室温下的宏观相变。建立了多相铁电-准电复合体系的定量组成-性能相关性,为储能优化提供了有价值的设计数据库。提出的材料约束策略为裁剪材料的功能特性提供了一个可推广的设计框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Characterizing the phase transition behavior of ferroelectrics with multi-field constraints at nano-scale

Characterizing the phase transition behavior of ferroelectrics with multi-field constraints at nano-scale
Multiphase ferroelectric-paraelectric composite systems have emerged as promising candidates for next-generation electromechanical devices. Accurately characterizing the response of embedded ferroelectrics under coupled multi-field constraints is essential for achieving breakthroughs in broader applications. In this paper, an indirect nanoindentation methodology is developed to investigate the ferroelectric behaviors under electro-thermal-mechanical constraints. We experimentally demonstrate unprecedented phase transition-mediated superelasticity in bulk ferroelectrics above the Curie temperature, achieving a 4200 nm recoverable indentation depth under 10 mN loading at 140 °C. Thermodynamic analyses reveal multi-field constraints serve as the dominant driving force behind this unconventional behavior. Through modulating the strength of interfacial multi-field constraints in ferroelectric-paraelectric phase composite systems, this work achieves macroscopic phase transition at room temperature. Quantitative composition-property correlations of multiphase ferroelectric-paraelectric composite systems are established and provide a valuable design database for energy storage optimization. The proposed materials-by-constraint strategy provides a generalizable design framework for tailoring material functional properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信