从数据中发现偏微分方程的工作流程:在树木生物量动力学中的应用

IF 1.9 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-08-17 DOI:10.1016/j.mex.2025.103560
Emilie Peynaud , Paulin Melatagia , Serge Stinckwich , Jean-François Barczi
{"title":"从数据中发现偏微分方程的工作流程:在树木生物量动力学中的应用","authors":"Emilie Peynaud ,&nbsp;Paulin Melatagia ,&nbsp;Serge Stinckwich ,&nbsp;Jean-François Barczi","doi":"10.1016/j.mex.2025.103560","DOIUrl":null,"url":null,"abstract":"<div><div>Mixed data and theory driven methods are promising approaches that can be used to bring better understanding of complex dynamics in life sciences. For vegetation growth, integrated knowledge may be lacking to design theoretical models like partial differential equations (PDE). This lack can be complemented by using data. The method presented in this paper is a generic computational workflow called CEDI that aims at discovering PDE models from data. As an illustration, we tested the workflow on biomass dynamics of three different 3D trees of specific architectural types.</div><div>● The name CEDI represents the four steps composing the workflow: data Collection, Extrapolation, Differentiation and Identification.</div><div>● The originality of this workflow is twofold: first, it encompasses the whole modeling process from the definition of the variables to the design of a PDE, and second it has been designed to be generic in a sense that it can apply to any dynamics and it covers most existing data driven PDE discovering methods.</div><div>● The workflow offers a framework to better understand data driven PDE discovering methods and a tool for modeling any dynamics, provided that right data and knowledge and also good algorithm settings are available.</div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"15 ","pages":"Article 103560"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A workflow to discover partial differential equations from data: Application to the dynamics of tree biomass\",\"authors\":\"Emilie Peynaud ,&nbsp;Paulin Melatagia ,&nbsp;Serge Stinckwich ,&nbsp;Jean-François Barczi\",\"doi\":\"10.1016/j.mex.2025.103560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mixed data and theory driven methods are promising approaches that can be used to bring better understanding of complex dynamics in life sciences. For vegetation growth, integrated knowledge may be lacking to design theoretical models like partial differential equations (PDE). This lack can be complemented by using data. The method presented in this paper is a generic computational workflow called CEDI that aims at discovering PDE models from data. As an illustration, we tested the workflow on biomass dynamics of three different 3D trees of specific architectural types.</div><div>● The name CEDI represents the four steps composing the workflow: data Collection, Extrapolation, Differentiation and Identification.</div><div>● The originality of this workflow is twofold: first, it encompasses the whole modeling process from the definition of the variables to the design of a PDE, and second it has been designed to be generic in a sense that it can apply to any dynamics and it covers most existing data driven PDE discovering methods.</div><div>● The workflow offers a framework to better understand data driven PDE discovering methods and a tool for modeling any dynamics, provided that right data and knowledge and also good algorithm settings are available.</div></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"15 \",\"pages\":\"Article 103560\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215016125004042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125004042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

混合数据和理论驱动的方法是很有前途的方法,可以用来更好地理解生命科学中的复杂动力学。对于植被生长,在设计偏微分方程(PDE)等理论模型时可能缺乏整合的知识。这种不足可以通过使用数据加以补充。本文提出的方法是一种称为CEDI的通用计算工作流,旨在从数据中发现PDE模型。作为一个例子,我们测试了三种不同建筑类型的3D树的生物量动态工作流程。●名称CEDI代表组成工作流程的四个步骤:数据收集、外推、区分和识别。●此工作流的独创性是双重的:首先,它包含了从变量定义到PDE设计的整个建模过程,其次,它被设计成通用的,在某种意义上它可以应用于任何动态,它涵盖了大多数现有的数据驱动的PDE发现方法。●工作流提供了一个框架,以更好地理解数据驱动的PDE发现方法和建模任何动态的工具,前提是提供正确的数据和知识以及良好的算法设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A workflow to discover partial differential equations from data: Application to the dynamics of tree biomass

A workflow to discover partial differential equations from data: Application to the dynamics of tree biomass
Mixed data and theory driven methods are promising approaches that can be used to bring better understanding of complex dynamics in life sciences. For vegetation growth, integrated knowledge may be lacking to design theoretical models like partial differential equations (PDE). This lack can be complemented by using data. The method presented in this paper is a generic computational workflow called CEDI that aims at discovering PDE models from data. As an illustration, we tested the workflow on biomass dynamics of three different 3D trees of specific architectural types.
● The name CEDI represents the four steps composing the workflow: data Collection, Extrapolation, Differentiation and Identification.
● The originality of this workflow is twofold: first, it encompasses the whole modeling process from the definition of the variables to the design of a PDE, and second it has been designed to be generic in a sense that it can apply to any dynamics and it covers most existing data driven PDE discovering methods.
● The workflow offers a framework to better understand data driven PDE discovering methods and a tool for modeling any dynamics, provided that right data and knowledge and also good algorithm settings are available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信