Cu2-xAgxCdSnSe4(x= 0,0.5, 1,1.5, 2)四元硫系化合物的电子结构、光学和热电性质的计算研究

IF 3.9 Q3 PHYSICS, CONDENSED MATTER
R. Aram Senthil Srinivasan , R. Meenakshi , A. Amudhavalli , R. Rajeswara Palanichamy , K. Iyakutti , Y. Kawazoe
{"title":"Cu2-xAgxCdSnSe4(x= 0,0.5, 1,1.5, 2)四元硫系化合物的电子结构、光学和热电性质的计算研究","authors":"R. Aram Senthil Srinivasan ,&nbsp;R. Meenakshi ,&nbsp;A. Amudhavalli ,&nbsp;R. Rajeswara Palanichamy ,&nbsp;K. Iyakutti ,&nbsp;Y. Kawazoe","doi":"10.1016/j.cocom.2025.e01138","DOIUrl":null,"url":null,"abstract":"<div><div>This study employs density functional theory (DFT) to investigate the structural, electronic, and optical properties of quaternary chalcogenides Cu<sub>2-x</sub>Ag<sub>x</sub>CdSnSe<sub>4</sub> (x = 0, 0.5, 1, 1.5, 2), considering both kesterite (KS) and stannite (ST) crystal phases. To ensure robust theoretical modelling, a combination of exchange-correlation functional was utilized, including, the Tran–Blaha modified Becke–Johnson (TB-mBJ), and Hubbard U corrections to account for strong electron correlation effects. The electronic structure analysis reveals direct band gaps at the Γ-point ranging from 0.947 to 1.548 eV. Density of states (DOS) calculations indicate that the valence band maximum (VBM) is primarily composed of Cu/Ag <em>d</em>-states and Se <em>p</em>-states and the conduction band minimum (CBM) is dominated by Sn <em>s</em>-states and Se <em>p</em>-states. Optical properties, including the complex dielectric function, refractive index, reflectivity, extinction coefficient, and absorption spectra, were systematically evaluated. The high absorption coefficients highlight strong light-harvesting potential in the visible region, reinforcing the suitability of these materials for solar energy conversion. Additionally, thermoelectric transport properties were analyzed using the BoltzTraP code, yielding key parameters such as electrical conductivity, Seebeck coefficient, and electronic thermal conductivity. These findings contribute valuable insights into the tunability of electronic and thermal transport properties via Ag substitution, offering guidance for the design of multifunctional materials in hybrid photovoltaic/thermoelectric (PV/TE) systems. This work lays the groundwork for future studies in band gap engineering, defect tolerance, and device optimization for solar energy applications.</div></div>","PeriodicalId":46322,"journal":{"name":"Computational Condensed Matter","volume":"45 ","pages":"Article e01138"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational study of Electronic Structure, optical and thermoelectric properties of Cu2-xAgxCdSnSe4(x=0, 0.5, 1, 1.5, 2) Quaternary Chalcogenides\",\"authors\":\"R. Aram Senthil Srinivasan ,&nbsp;R. Meenakshi ,&nbsp;A. Amudhavalli ,&nbsp;R. Rajeswara Palanichamy ,&nbsp;K. Iyakutti ,&nbsp;Y. Kawazoe\",\"doi\":\"10.1016/j.cocom.2025.e01138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study employs density functional theory (DFT) to investigate the structural, electronic, and optical properties of quaternary chalcogenides Cu<sub>2-x</sub>Ag<sub>x</sub>CdSnSe<sub>4</sub> (x = 0, 0.5, 1, 1.5, 2), considering both kesterite (KS) and stannite (ST) crystal phases. To ensure robust theoretical modelling, a combination of exchange-correlation functional was utilized, including, the Tran–Blaha modified Becke–Johnson (TB-mBJ), and Hubbard U corrections to account for strong electron correlation effects. The electronic structure analysis reveals direct band gaps at the Γ-point ranging from 0.947 to 1.548 eV. Density of states (DOS) calculations indicate that the valence band maximum (VBM) is primarily composed of Cu/Ag <em>d</em>-states and Se <em>p</em>-states and the conduction band minimum (CBM) is dominated by Sn <em>s</em>-states and Se <em>p</em>-states. Optical properties, including the complex dielectric function, refractive index, reflectivity, extinction coefficient, and absorption spectra, were systematically evaluated. The high absorption coefficients highlight strong light-harvesting potential in the visible region, reinforcing the suitability of these materials for solar energy conversion. Additionally, thermoelectric transport properties were analyzed using the BoltzTraP code, yielding key parameters such as electrical conductivity, Seebeck coefficient, and electronic thermal conductivity. These findings contribute valuable insights into the tunability of electronic and thermal transport properties via Ag substitution, offering guidance for the design of multifunctional materials in hybrid photovoltaic/thermoelectric (PV/TE) systems. This work lays the groundwork for future studies in band gap engineering, defect tolerance, and device optimization for solar energy applications.</div></div>\",\"PeriodicalId\":46322,\"journal\":{\"name\":\"Computational Condensed Matter\",\"volume\":\"45 \",\"pages\":\"Article e01138\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352214325001388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352214325001388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用密度泛函理论(DFT)研究了四元硫系化合物Cu2-xAgxCdSnSe4 (x = 0,0.5, 1,1.5, 2)的结构、电子和光学性质,同时考虑了kesterite (KS)和stannite (ST)的晶相。为了确保理论模型的鲁棒性,我们使用了交换相关函数的组合,包括trans - blaha修正的Becke-Johnson (TB-mBJ)和Hubbard U修正,以解释强电子相关效应。电子结构分析表明,Γ-point处的直接带隙范围为0.947 ~ 1.548 eV。态密度(DOS)计算表明,价带最大值(VBM)主要由Cu/Ag - d态和Se - p态组成,导带最小值(CBM)主要由Sn -s态和Se - p态组成。光学性能,包括复介电函数,折射率,反射率,消光系数和吸收光谱,系统地评估。高吸收系数突出了可见光区的强光收集潜力,加强了这些材料用于太阳能转换的适用性。此外,利用BoltzTraP代码分析了热电输运性质,得到了电导率、塞贝克系数和电子导热系数等关键参数。这些发现为通过银取代的电子和热输运性质的可调性提供了有价值的见解,为混合光伏/热电(PV/TE)系统中多功能材料的设计提供了指导。这项工作为未来在带隙工程、缺陷容限和太阳能应用器件优化方面的研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational study of Electronic Structure, optical and thermoelectric properties of Cu2-xAgxCdSnSe4(x=0, 0.5, 1, 1.5, 2) Quaternary Chalcogenides
This study employs density functional theory (DFT) to investigate the structural, electronic, and optical properties of quaternary chalcogenides Cu2-xAgxCdSnSe4 (x = 0, 0.5, 1, 1.5, 2), considering both kesterite (KS) and stannite (ST) crystal phases. To ensure robust theoretical modelling, a combination of exchange-correlation functional was utilized, including, the Tran–Blaha modified Becke–Johnson (TB-mBJ), and Hubbard U corrections to account for strong electron correlation effects. The electronic structure analysis reveals direct band gaps at the Γ-point ranging from 0.947 to 1.548 eV. Density of states (DOS) calculations indicate that the valence band maximum (VBM) is primarily composed of Cu/Ag d-states and Se p-states and the conduction band minimum (CBM) is dominated by Sn s-states and Se p-states. Optical properties, including the complex dielectric function, refractive index, reflectivity, extinction coefficient, and absorption spectra, were systematically evaluated. The high absorption coefficients highlight strong light-harvesting potential in the visible region, reinforcing the suitability of these materials for solar energy conversion. Additionally, thermoelectric transport properties were analyzed using the BoltzTraP code, yielding key parameters such as electrical conductivity, Seebeck coefficient, and electronic thermal conductivity. These findings contribute valuable insights into the tunability of electronic and thermal transport properties via Ag substitution, offering guidance for the design of multifunctional materials in hybrid photovoltaic/thermoelectric (PV/TE) systems. This work lays the groundwork for future studies in band gap engineering, defect tolerance, and device optimization for solar energy applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Condensed Matter
Computational Condensed Matter PHYSICS, CONDENSED MATTER-
CiteScore
3.70
自引率
9.50%
发文量
134
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信