Y. Sekhmani , S.K. Maurya , J. Rayimbaev , M. Altanji , I. Ibragimov , S. Muminov
{"title":"幻影增强的kkb - ramond引力中的违反洛伦兹的ModMax黑洞:热力学和拓扑电荷","authors":"Y. Sekhmani , S.K. Maurya , J. Rayimbaev , M. Altanji , I. Ibragimov , S. Muminov","doi":"10.1016/j.dark.2025.102079","DOIUrl":null,"url":null,"abstract":"<div><div>We derive exact static, spherically symmetric black hole (BH) solutions within the framework of four-dimensional Einstein gravity, coupled to ModMax nonlinear electrodynamics and a Kalb–Ramond two-form. This coupling is governed by a discrete sign parameter, denoted as <span><math><mrow><mi>ζ</mi><mo>=</mo><mo>±</mo><mn>1</mn></mrow></math></span>. In the ”ordinary” branch (<span><math><mrow><mi>ζ</mi><mo>=</mo><mo>+</mo><mn>1</mn></mrow></math></span>), the metric features both Cauchy and event horizons, while the electromagnetic stress–energy adheres to all classical energy conditions. In contrast, the ”phantom” branch (<span><math><mrow><mi>ζ</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow></math></span>) accommodates only a single horizon and simultaneously violates the weak, null, and strong conditions, which reflects genuine ghost-matter behaviour. The thermodynamic behaviour for <span><math><mrow><mi>ζ</mi><mo>=</mo><mo>+</mo><mn>1</mn></mrow></math></span> results in multiple divergences in heat capacity and presents a distinctive swallowtail pattern in the AdS Gibbs free energy, indicative of a first-order phase transition that encompasses small, intermediate, and large phases. In contrast, for <span><math><mrow><mi>ζ</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow></math></span>, there is only a single divergence observed, accompanied by a smooth Gibbs curve with no van der Waals-type oscillatory behaviour, which precludes the possibility of true coexistence. Topological analysis using Duan’s <span><math><mi>φ</mi></math></span>-mapping in AdS further differentiates the branches by examining their winding numbers. For <span><math><mrow><mi>ζ</mi><mo>=</mo><mo>+</mo><mn>1</mn></mrow></math></span>, the winding numbers are <span><math><mrow><mo>(</mo><mo>+</mo><mn>1</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>,</mo><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>, resulting in a total topological charge (net winding number) of <span><math><mrow><mi>W</mi><mo>=</mo><mo>+</mo><mn>1</mn></mrow></math></span>. In contrast, for <span><math><mrow><mi>ζ</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow></math></span>, the winding numbers are <span><math><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>, leading to a total topological charge of <span><math><mrow><mi>W</mi><mo>=</mo><mn>0</mn></mrow></math></span>. This distinction assigns a clear topological charge, which differentiates between the first-order transitions associated with <span><math><mrow><mi>ζ</mi><mo>=</mo><mo>+</mo><mn>1</mn></mrow></math></span> and the smooth, latent-heat-free phase changes linked to <span><math><mrow><mi>ζ</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow></math></span>. Overall, <span><math><mi>ζ</mi></math></span> serves as the primary determinant influencing causal structure, energy condition profiles, critical phenomena, and topological charge in ModMax-Kalb-Ramond BH.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"50 ","pages":"Article 102079"},"PeriodicalIF":6.4000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lorentz-violating ModMax black holes in phantom-enhanced Kalb–Ramond gravity: Thermodynamics and topological charges\",\"authors\":\"Y. Sekhmani , S.K. Maurya , J. Rayimbaev , M. Altanji , I. Ibragimov , S. Muminov\",\"doi\":\"10.1016/j.dark.2025.102079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We derive exact static, spherically symmetric black hole (BH) solutions within the framework of four-dimensional Einstein gravity, coupled to ModMax nonlinear electrodynamics and a Kalb–Ramond two-form. This coupling is governed by a discrete sign parameter, denoted as <span><math><mrow><mi>ζ</mi><mo>=</mo><mo>±</mo><mn>1</mn></mrow></math></span>. In the ”ordinary” branch (<span><math><mrow><mi>ζ</mi><mo>=</mo><mo>+</mo><mn>1</mn></mrow></math></span>), the metric features both Cauchy and event horizons, while the electromagnetic stress–energy adheres to all classical energy conditions. In contrast, the ”phantom” branch (<span><math><mrow><mi>ζ</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow></math></span>) accommodates only a single horizon and simultaneously violates the weak, null, and strong conditions, which reflects genuine ghost-matter behaviour. The thermodynamic behaviour for <span><math><mrow><mi>ζ</mi><mo>=</mo><mo>+</mo><mn>1</mn></mrow></math></span> results in multiple divergences in heat capacity and presents a distinctive swallowtail pattern in the AdS Gibbs free energy, indicative of a first-order phase transition that encompasses small, intermediate, and large phases. In contrast, for <span><math><mrow><mi>ζ</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow></math></span>, there is only a single divergence observed, accompanied by a smooth Gibbs curve with no van der Waals-type oscillatory behaviour, which precludes the possibility of true coexistence. Topological analysis using Duan’s <span><math><mi>φ</mi></math></span>-mapping in AdS further differentiates the branches by examining their winding numbers. For <span><math><mrow><mi>ζ</mi><mo>=</mo><mo>+</mo><mn>1</mn></mrow></math></span>, the winding numbers are <span><math><mrow><mo>(</mo><mo>+</mo><mn>1</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>,</mo><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>, resulting in a total topological charge (net winding number) of <span><math><mrow><mi>W</mi><mo>=</mo><mo>+</mo><mn>1</mn></mrow></math></span>. In contrast, for <span><math><mrow><mi>ζ</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow></math></span>, the winding numbers are <span><math><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>, leading to a total topological charge of <span><math><mrow><mi>W</mi><mo>=</mo><mn>0</mn></mrow></math></span>. This distinction assigns a clear topological charge, which differentiates between the first-order transitions associated with <span><math><mrow><mi>ζ</mi><mo>=</mo><mo>+</mo><mn>1</mn></mrow></math></span> and the smooth, latent-heat-free phase changes linked to <span><math><mrow><mi>ζ</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow></math></span>. Overall, <span><math><mi>ζ</mi></math></span> serves as the primary determinant influencing causal structure, energy condition profiles, critical phenomena, and topological charge in ModMax-Kalb-Ramond BH.</div></div>\",\"PeriodicalId\":48774,\"journal\":{\"name\":\"Physics of the Dark Universe\",\"volume\":\"50 \",\"pages\":\"Article 102079\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Dark Universe\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212686425002729\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686425002729","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Lorentz-violating ModMax black holes in phantom-enhanced Kalb–Ramond gravity: Thermodynamics and topological charges
We derive exact static, spherically symmetric black hole (BH) solutions within the framework of four-dimensional Einstein gravity, coupled to ModMax nonlinear electrodynamics and a Kalb–Ramond two-form. This coupling is governed by a discrete sign parameter, denoted as . In the ”ordinary” branch (), the metric features both Cauchy and event horizons, while the electromagnetic stress–energy adheres to all classical energy conditions. In contrast, the ”phantom” branch () accommodates only a single horizon and simultaneously violates the weak, null, and strong conditions, which reflects genuine ghost-matter behaviour. The thermodynamic behaviour for results in multiple divergences in heat capacity and presents a distinctive swallowtail pattern in the AdS Gibbs free energy, indicative of a first-order phase transition that encompasses small, intermediate, and large phases. In contrast, for , there is only a single divergence observed, accompanied by a smooth Gibbs curve with no van der Waals-type oscillatory behaviour, which precludes the possibility of true coexistence. Topological analysis using Duan’s -mapping in AdS further differentiates the branches by examining their winding numbers. For , the winding numbers are , resulting in a total topological charge (net winding number) of . In contrast, for , the winding numbers are , leading to a total topological charge of . This distinction assigns a clear topological charge, which differentiates between the first-order transitions associated with and the smooth, latent-heat-free phase changes linked to . Overall, serves as the primary determinant influencing causal structure, energy condition profiles, critical phenomena, and topological charge in ModMax-Kalb-Ramond BH.
期刊介绍:
Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact.
The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.