一种非支配排序的合作-竞争混合进化算法用于分路传动系统齿形动态优化

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Shuiguang Tong , Xiaoyan Yan , Zheming Tong , Hu Dai
{"title":"一种非支配排序的合作-竞争混合进化算法用于分路传动系统齿形动态优化","authors":"Shuiguang Tong ,&nbsp;Xiaoyan Yan ,&nbsp;Zheming Tong ,&nbsp;Hu Dai","doi":"10.1016/j.mechmachtheory.2025.106215","DOIUrl":null,"url":null,"abstract":"<div><div>Split-path gear transmission systems (SPGTs) are widely employed in construction machinery, valued for their power-splitting capabilities and high torque density. The dynamic characteristics critically impact overall mechanical performance. This study proposes a hybrid cooperative-competitive evolutionary algorithm with non-dominated sorting (CCNS) for tooth profiles dynamic optimization in SPGTs. A nonlinear dynamic model for multi-gear pair SPGTs is first developed, incorporating time-varying mesh stiffness, damping, backlash, and enabling micro-geometric tooth profile modifications. This model is then integrated within the CCNS algorithm to minimize vibration acceleration RMS and dynamic transmission error peak-to-peak by optimizing modification parameters. The dynamic model’s validity is confirmed experimentally on a self-developed test rig under the constant torque and varying input speeds (450–1800 r/min). Results show predicted acceleration trends closely match measurements, exhibiting RMS errors of 4 % to 11.7 %. Leveraging this validated model, the influence of tooth profile modification parameters on dynamic characteristics is analyzed. This analysis reveals non-monotonic parameter effects, underscoring the necessity of multi-objective optimization. For the high-dimensional design space of SPGTs, CCNS demonstrates faster convergence and delivers superior Pareto solutions compared to other widely used optimization algorithms.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"216 ","pages":"Article 106215"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid cooperative-competitive evolutionary algorithm with non-dominated sorting for gear profile dynamic optimization in split-path transmission systems\",\"authors\":\"Shuiguang Tong ,&nbsp;Xiaoyan Yan ,&nbsp;Zheming Tong ,&nbsp;Hu Dai\",\"doi\":\"10.1016/j.mechmachtheory.2025.106215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Split-path gear transmission systems (SPGTs) are widely employed in construction machinery, valued for their power-splitting capabilities and high torque density. The dynamic characteristics critically impact overall mechanical performance. This study proposes a hybrid cooperative-competitive evolutionary algorithm with non-dominated sorting (CCNS) for tooth profiles dynamic optimization in SPGTs. A nonlinear dynamic model for multi-gear pair SPGTs is first developed, incorporating time-varying mesh stiffness, damping, backlash, and enabling micro-geometric tooth profile modifications. This model is then integrated within the CCNS algorithm to minimize vibration acceleration RMS and dynamic transmission error peak-to-peak by optimizing modification parameters. The dynamic model’s validity is confirmed experimentally on a self-developed test rig under the constant torque and varying input speeds (450–1800 r/min). Results show predicted acceleration trends closely match measurements, exhibiting RMS errors of 4 % to 11.7 %. Leveraging this validated model, the influence of tooth profile modification parameters on dynamic characteristics is analyzed. This analysis reveals non-monotonic parameter effects, underscoring the necessity of multi-objective optimization. For the high-dimensional design space of SPGTs, CCNS demonstrates faster convergence and delivers superior Pareto solutions compared to other widely used optimization algorithms.</div></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":\"216 \",\"pages\":\"Article 106215\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X25003040\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X25003040","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

分路齿轮传动系统(spgt)因其功率分配能力和高扭矩密度而被广泛应用于工程机械中。动态特性对整体机械性能影响很大。提出了一种基于非支配排序的合作-竞争混合进化算法,用于spgt齿形动态优化。首先开发了多齿轮副spgt的非线性动力学模型,该模型包含时变啮合刚度、阻尼、间隙,并允许微几何齿廓修改。然后将该模型集成到CCNS算法中,通过优化修正参数,使振动加速度均方根值和动态传输误差峰间最小。在自行研制的恒转矩、变转速(450 ~ 1800 r/min)试验台上,验证了动态模型的有效性。结果表明,预测的加速度趋势与测量结果非常接近,显示出4%到11.7%的均方根误差。利用该验证模型,分析了齿形修形参数对动态特性的影响。这一分析揭示了参数的非单调效应,强调了多目标优化的必要性。对于spgt的高维设计空间,与其他广泛使用的优化算法相比,CCNS具有更快的收敛速度和更好的Pareto解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid cooperative-competitive evolutionary algorithm with non-dominated sorting for gear profile dynamic optimization in split-path transmission systems
Split-path gear transmission systems (SPGTs) are widely employed in construction machinery, valued for their power-splitting capabilities and high torque density. The dynamic characteristics critically impact overall mechanical performance. This study proposes a hybrid cooperative-competitive evolutionary algorithm with non-dominated sorting (CCNS) for tooth profiles dynamic optimization in SPGTs. A nonlinear dynamic model for multi-gear pair SPGTs is first developed, incorporating time-varying mesh stiffness, damping, backlash, and enabling micro-geometric tooth profile modifications. This model is then integrated within the CCNS algorithm to minimize vibration acceleration RMS and dynamic transmission error peak-to-peak by optimizing modification parameters. The dynamic model’s validity is confirmed experimentally on a self-developed test rig under the constant torque and varying input speeds (450–1800 r/min). Results show predicted acceleration trends closely match measurements, exhibiting RMS errors of 4 % to 11.7 %. Leveraging this validated model, the influence of tooth profile modification parameters on dynamic characteristics is analyzed. This analysis reveals non-monotonic parameter effects, underscoring the necessity of multi-objective optimization. For the high-dimensional design space of SPGTs, CCNS demonstrates faster convergence and delivers superior Pareto solutions compared to other widely used optimization algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信