正确的链长是多少?液晶网络调谐的分子设计

IF 5.2 1区 化学 Q1 POLYMER SCIENCE
Simone Donato*, , , Rachele Bini, , , Giovanni Simonetti, , , Neri Fuochi, , , Martina Salzano de Luna, , , Camille Chatard, , , Pierre-Louis Brient, , , Diederik S. Wiersma, , , Daniele Martella*, , and , Camilla Parmeggiani, 
{"title":"正确的链长是多少?液晶网络调谐的分子设计","authors":"Simone Donato*,&nbsp;, ,&nbsp;Rachele Bini,&nbsp;, ,&nbsp;Giovanni Simonetti,&nbsp;, ,&nbsp;Neri Fuochi,&nbsp;, ,&nbsp;Martina Salzano de Luna,&nbsp;, ,&nbsp;Camille Chatard,&nbsp;, ,&nbsp;Pierre-Louis Brient,&nbsp;, ,&nbsp;Diederik S. Wiersma,&nbsp;, ,&nbsp;Daniele Martella*,&nbsp;, and ,&nbsp;Camilla Parmeggiani,&nbsp;","doi":"10.1021/acs.macromol.5c01011","DOIUrl":null,"url":null,"abstract":"<p >Liquid crystalline networks (LCNs) are stimuli-responsive polymers with programmable actuation properties, including fast response times and tunable force generation. Their reversible deformations can be achieved under light irradiation when polymers are functionalized with photoresponsive molecules such as azobenzenes. All of these features need to be adapted for each specific application, and this is possible by tuning the material properties through molecular design. In this study, we demonstrate how to tailor both mechanical properties and light-dependent force development thanks to the synthesis of mesogenic cross-linkers with different alkyl chains. Acting on this molecular parameter allows modulating the maximum actuation force, while modifying the cross-linking degree is a more advantageous strategy to get fast activation. Our results provide valuable insights into the relationship between the molecular structure and material performance, paving the way for a rational design of innovative responsive materials.</p>","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"58 18","pages":"9672–9681"},"PeriodicalIF":5.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.macromol.5c01011","citationCount":"0","resultStr":"{\"title\":\"What Is the Right Chain Length? Liquid Crystalline Network Tuning by Molecular Design\",\"authors\":\"Simone Donato*,&nbsp;, ,&nbsp;Rachele Bini,&nbsp;, ,&nbsp;Giovanni Simonetti,&nbsp;, ,&nbsp;Neri Fuochi,&nbsp;, ,&nbsp;Martina Salzano de Luna,&nbsp;, ,&nbsp;Camille Chatard,&nbsp;, ,&nbsp;Pierre-Louis Brient,&nbsp;, ,&nbsp;Diederik S. Wiersma,&nbsp;, ,&nbsp;Daniele Martella*,&nbsp;, and ,&nbsp;Camilla Parmeggiani,&nbsp;\",\"doi\":\"10.1021/acs.macromol.5c01011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Liquid crystalline networks (LCNs) are stimuli-responsive polymers with programmable actuation properties, including fast response times and tunable force generation. Their reversible deformations can be achieved under light irradiation when polymers are functionalized with photoresponsive molecules such as azobenzenes. All of these features need to be adapted for each specific application, and this is possible by tuning the material properties through molecular design. In this study, we demonstrate how to tailor both mechanical properties and light-dependent force development thanks to the synthesis of mesogenic cross-linkers with different alkyl chains. Acting on this molecular parameter allows modulating the maximum actuation force, while modifying the cross-linking degree is a more advantageous strategy to get fast activation. Our results provide valuable insights into the relationship between the molecular structure and material performance, paving the way for a rational design of innovative responsive materials.</p>\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"58 18\",\"pages\":\"9672–9681\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.macromol.5c01011\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.macromol.5c01011\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.macromol.5c01011","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

液晶网络(lcn)是具有可编程驱动特性的刺激响应聚合物,包括快速响应时间和可调的力产生。当聚合物与光响应分子(如偶氮苯)功能化时,它们的可逆变形可以在光照射下实现。所有这些特性都需要针对每个特定的应用进行调整,这可以通过分子设计来调整材料特性。在这项研究中,我们展示了如何通过合成具有不同烷基链的介系交联剂来调整机械性能和光依赖力的发展。作用于该分子参数可以调节最大致动力,而改变交联度是获得快速激活的更有利策略。我们的研究结果为分子结构与材料性能之间的关系提供了有价值的见解,为创新响应材料的合理设计铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

What Is the Right Chain Length? Liquid Crystalline Network Tuning by Molecular Design

What Is the Right Chain Length? Liquid Crystalline Network Tuning by Molecular Design

Liquid crystalline networks (LCNs) are stimuli-responsive polymers with programmable actuation properties, including fast response times and tunable force generation. Their reversible deformations can be achieved under light irradiation when polymers are functionalized with photoresponsive molecules such as azobenzenes. All of these features need to be adapted for each specific application, and this is possible by tuning the material properties through molecular design. In this study, we demonstrate how to tailor both mechanical properties and light-dependent force development thanks to the synthesis of mesogenic cross-linkers with different alkyl chains. Acting on this molecular parameter allows modulating the maximum actuation force, while modifying the cross-linking degree is a more advantageous strategy to get fast activation. Our results provide valuable insights into the relationship between the molecular structure and material performance, paving the way for a rational design of innovative responsive materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信