势能曲线和曲面的人工神经网络拟合:1/R难题。

IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Siddhuram Rana, Uday Sankar Manoj, Upakarasamy Lourderaj, Narayanasami Sathyamurthy
{"title":"势能曲线和曲面的人工神经网络拟合:1/R难题。","authors":"Siddhuram Rana,&nbsp;Uday Sankar Manoj,&nbsp;Upakarasamy Lourderaj,&nbsp;Narayanasami Sathyamurthy","doi":"10.1002/jcc.70220","DOIUrl":null,"url":null,"abstract":"<p>Within the Born-Oppenheimer approximation, the potential energy of a molecular system is written as a sum of electronic energy and nuclear-nuclear repulsion energy terms. The potential energy surface (PES), computed ab initio, as a function of bond distances and bond angles, has traditionally been represented using analytic functions and/or interpolation methods. We show here that the ab initio computed <i>electronic</i> energy values of a molecular system can be fitted more accurately than the corresponding potential energy values using the artificial neural network methodology. The exact Coulombic internuclear repulsion energy can be added subsequently to the fitted electronic energy to obtain an accurate PES.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 24","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.70220","citationCount":"0","resultStr":"{\"title\":\"Artificial Neural Networks Fitting of Potential Energy Curves and Surfaces: The 1/R Conundrum\",\"authors\":\"Siddhuram Rana,&nbsp;Uday Sankar Manoj,&nbsp;Upakarasamy Lourderaj,&nbsp;Narayanasami Sathyamurthy\",\"doi\":\"10.1002/jcc.70220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Within the Born-Oppenheimer approximation, the potential energy of a molecular system is written as a sum of electronic energy and nuclear-nuclear repulsion energy terms. The potential energy surface (PES), computed ab initio, as a function of bond distances and bond angles, has traditionally been represented using analytic functions and/or interpolation methods. We show here that the ab initio computed <i>electronic</i> energy values of a molecular system can be fitted more accurately than the corresponding potential energy values using the artificial neural network methodology. The exact Coulombic internuclear repulsion energy can be added subsequently to the fitted electronic energy to obtain an accurate PES.</p>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"46 24\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.70220\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70220\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70220","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在Born-Oppenheimer近似中,分子系统的势能被写成电子能量和核-核排斥能项的总和。势能面(PES)是键距和键角的函数,传统上是用解析函数或插值方法来表示的。我们在这里表明,从头算出的分子系统的电子能量值可以比使用人工神经网络方法更准确地拟合相应的势能值。精确的库仑核间斥力能可以随后加入到拟合的电子能量中,以获得精确的PES。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Artificial Neural Networks Fitting of Potential Energy Curves and Surfaces: The 1/R Conundrum

Artificial Neural Networks Fitting of Potential Energy Curves and Surfaces: The 1/R Conundrum

Within the Born-Oppenheimer approximation, the potential energy of a molecular system is written as a sum of electronic energy and nuclear-nuclear repulsion energy terms. The potential energy surface (PES), computed ab initio, as a function of bond distances and bond angles, has traditionally been represented using analytic functions and/or interpolation methods. We show here that the ab initio computed electronic energy values of a molecular system can be fitted more accurately than the corresponding potential energy values using the artificial neural network methodology. The exact Coulombic internuclear repulsion energy can be added subsequently to the fitted electronic energy to obtain an accurate PES.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信