三唑酸功能化氮化锆在工业级电流密度下气送H2O2生产中的应用。

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiahao Liu, , , Zhaorui Zhang, , , Xiaoli Wang, , , Chenshuai Han, , and , Minghui Yang*, 
{"title":"三唑酸功能化氮化锆在工业级电流密度下气送H2O2生产中的应用。","authors":"Jiahao Liu,&nbsp;, ,&nbsp;Zhaorui Zhang,&nbsp;, ,&nbsp;Xiaoli Wang,&nbsp;, ,&nbsp;Chenshuai Han,&nbsp;, and ,&nbsp;Minghui Yang*,&nbsp;","doi":"10.1021/jacs.5c11803","DOIUrl":null,"url":null,"abstract":"<p >The electrochemical two-electron oxygen reduction reaction (2e<sup>–</sup> ORR) offers a green and energy-efficient pathway for hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production, yet reliance on high-purity oxygen significantly limits scalability. Here, we report a triazolate-modified zirconium nitride catalyst (T-ZrN) that enables efficient and durable H<sub>2</sub>O<sub>2</sub> electrosynthesis directly from atmospheric air. The T-ZrN catalyst achieves a high H<sub>2</sub>O<sub>2</sub> yield of 55.6 mol·h<sup>–1</sup>·g<sup>–1</sup> and a Faradaic efficiency of 93.2%, while maintaining stable operation over 540 h at an industrial-level current density of 800 mA·cm<sup>–2</sup>. Economic analysis reveals a production cost of 70 wt % H<sub>2</sub>O<sub>2</sub> as low as $0.10 kg<sup>–1</sup>, highlighting its commercial potential. This work presents a viable strategy for cost-effective and decentralized H<sub>2</sub>O<sub>2</sub> manufacturing advancing sustainable chemical production technologies.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 40","pages":"36618–36625"},"PeriodicalIF":15.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triazolate-Functionalized Zirconium Nitride for Air-Fed H2O2 Production with Industrial-Level Current Density\",\"authors\":\"Jiahao Liu,&nbsp;, ,&nbsp;Zhaorui Zhang,&nbsp;, ,&nbsp;Xiaoli Wang,&nbsp;, ,&nbsp;Chenshuai Han,&nbsp;, and ,&nbsp;Minghui Yang*,&nbsp;\",\"doi\":\"10.1021/jacs.5c11803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The electrochemical two-electron oxygen reduction reaction (2e<sup>–</sup> ORR) offers a green and energy-efficient pathway for hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production, yet reliance on high-purity oxygen significantly limits scalability. Here, we report a triazolate-modified zirconium nitride catalyst (T-ZrN) that enables efficient and durable H<sub>2</sub>O<sub>2</sub> electrosynthesis directly from atmospheric air. The T-ZrN catalyst achieves a high H<sub>2</sub>O<sub>2</sub> yield of 55.6 mol·h<sup>–1</sup>·g<sup>–1</sup> and a Faradaic efficiency of 93.2%, while maintaining stable operation over 540 h at an industrial-level current density of 800 mA·cm<sup>–2</sup>. Economic analysis reveals a production cost of 70 wt % H<sub>2</sub>O<sub>2</sub> as low as $0.10 kg<sup>–1</sup>, highlighting its commercial potential. This work presents a viable strategy for cost-effective and decentralized H<sub>2</sub>O<sub>2</sub> manufacturing advancing sustainable chemical production technologies.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 40\",\"pages\":\"36618–36625\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.5c11803\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c11803","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电化学双电子氧还原反应(2e- ORR)为生产过氧化氢(H2O2)提供了一种绿色节能的途径,但对高纯度氧气的依赖严重限制了可扩展性。在这里,我们报道了一种三唑酸盐修饰的氮化锆催化剂(T-ZrN),它可以直接从大气中高效、持久地电合成H2O2。T-ZrN催化剂的H2O2产率为55.6 mol·h-1·g-1,法拉第效率为93.2%,在800 mA·cm-2的工业级电流密度下可稳定运行540 h以上。经济分析显示,70% H2O2的生产成本低至0.10美元/ kg-1,凸显了其商业潜力。这项工作提出了一个可行的战略,具有成本效益和分散的H2O2制造推进可持续化工生产技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Triazolate-Functionalized Zirconium Nitride for Air-Fed H2O2 Production with Industrial-Level Current Density

Triazolate-Functionalized Zirconium Nitride for Air-Fed H2O2 Production with Industrial-Level Current Density

The electrochemical two-electron oxygen reduction reaction (2e ORR) offers a green and energy-efficient pathway for hydrogen peroxide (H2O2) production, yet reliance on high-purity oxygen significantly limits scalability. Here, we report a triazolate-modified zirconium nitride catalyst (T-ZrN) that enables efficient and durable H2O2 electrosynthesis directly from atmospheric air. The T-ZrN catalyst achieves a high H2O2 yield of 55.6 mol·h–1·g–1 and a Faradaic efficiency of 93.2%, while maintaining stable operation over 540 h at an industrial-level current density of 800 mA·cm–2. Economic analysis reveals a production cost of 70 wt % H2O2 as low as $0.10 kg–1, highlighting its commercial potential. This work presents a viable strategy for cost-effective and decentralized H2O2 manufacturing advancing sustainable chemical production technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信