{"title":"代谢中的GPCR偏倚信号传导。","authors":"Zhaoyu Zhang, Zijian Li","doi":"10.1007/164_2025_774","DOIUrl":null,"url":null,"abstract":"<p><p>G protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and the most prominent drug targets. GPCR-biased signaling exerts different functions through distinct downstream signaling pathways of receptor to maintain body homeostasis. Metabolism is the series of biochemical processes that occur within a living organism to maintain life. GPCR-biased signaling and metabolism exhibit bidirectional interplay. On the one hand, metabolites including short-chain fatty acids (SCFAs) and long-chain fatty acids (LCFAs) act as ligands inducing biased GPCRs signaling. On the other hand, activated GPCRs regulate diverse metabolic functions by biased signal sorting (G protein or β-arrestin-mediated). G protein signaling mainly mediates rapid metabolic reaction, and β-arrestin signaling mainly mediates sustained metabolic effects. In clinical drug applications, GPCR-biased drugs can revolutionize metabolic disease therapeutics by enabling pathway-selective drug design to enhance efficacy while reducing side effects. Thus, delving deeper into the relationship between GPCR-biased signaling and metabolism is of great importance in physiology, pathology, and pharmacology. A systematic exploration of biased signaling will enhance insights into GPCRs-metabolism interactions, aiding disease mechanism studies, drug discovery, and clinical treatment strategies.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GPCR Biased Signaling in Metabolism.\",\"authors\":\"Zhaoyu Zhang, Zijian Li\",\"doi\":\"10.1007/164_2025_774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>G protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and the most prominent drug targets. GPCR-biased signaling exerts different functions through distinct downstream signaling pathways of receptor to maintain body homeostasis. Metabolism is the series of biochemical processes that occur within a living organism to maintain life. GPCR-biased signaling and metabolism exhibit bidirectional interplay. On the one hand, metabolites including short-chain fatty acids (SCFAs) and long-chain fatty acids (LCFAs) act as ligands inducing biased GPCRs signaling. On the other hand, activated GPCRs regulate diverse metabolic functions by biased signal sorting (G protein or β-arrestin-mediated). G protein signaling mainly mediates rapid metabolic reaction, and β-arrestin signaling mainly mediates sustained metabolic effects. In clinical drug applications, GPCR-biased drugs can revolutionize metabolic disease therapeutics by enabling pathway-selective drug design to enhance efficacy while reducing side effects. Thus, delving deeper into the relationship between GPCR-biased signaling and metabolism is of great importance in physiology, pathology, and pharmacology. A systematic exploration of biased signaling will enhance insights into GPCRs-metabolism interactions, aiding disease mechanism studies, drug discovery, and clinical treatment strategies.</p>\",\"PeriodicalId\":12859,\"journal\":{\"name\":\"Handbook of experimental pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of experimental pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/164_2025_774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of experimental pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/164_2025_774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
G protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and the most prominent drug targets. GPCR-biased signaling exerts different functions through distinct downstream signaling pathways of receptor to maintain body homeostasis. Metabolism is the series of biochemical processes that occur within a living organism to maintain life. GPCR-biased signaling and metabolism exhibit bidirectional interplay. On the one hand, metabolites including short-chain fatty acids (SCFAs) and long-chain fatty acids (LCFAs) act as ligands inducing biased GPCRs signaling. On the other hand, activated GPCRs regulate diverse metabolic functions by biased signal sorting (G protein or β-arrestin-mediated). G protein signaling mainly mediates rapid metabolic reaction, and β-arrestin signaling mainly mediates sustained metabolic effects. In clinical drug applications, GPCR-biased drugs can revolutionize metabolic disease therapeutics by enabling pathway-selective drug design to enhance efficacy while reducing side effects. Thus, delving deeper into the relationship between GPCR-biased signaling and metabolism is of great importance in physiology, pathology, and pharmacology. A systematic exploration of biased signaling will enhance insights into GPCRs-metabolism interactions, aiding disease mechanism studies, drug discovery, and clinical treatment strategies.
期刊介绍:
The Handbook of Experimental Pharmacology is one of the most authoritative and influential book series in pharmacology. It provides critical and comprehensive discussions of the most significant areas of pharmacological research, written by leading international authorities. Each volume in the series represents the most informative and contemporary account of its subject available, making it an unrivalled reference source.