{"title":"从祖先重建中了解蛋白质的稳定性和功能活性。","authors":"Satoshi Akanuma","doi":"10.1016/j.jmb.2025.169435","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how proteins have evolved to adapt their stability and function to changing temperatures remains a central question in molecular biology. While structural analyses, site-directed mutagenesis, and directed evolution have yielded valuable insights, ancestral sequence reconstruction (ASR) has recently emerged as a powerful tool for addressing the drivers behind protein evolution. Specifically, by enabling the inference and experimental characterization of reconstructed ancient proteins, ASR provides unique perspectives on the molecular mechanisms underlying both thermostability and low-temperature-adaptation. This review outlines the historical development of research on protein temperature adaptation and highlights the role of ASR in advancing the field. Selected case studies illustrate how ASR has uncovered structural and dynamic features associated with extreme thermostability or enhanced activity at low temperatures. Common sources of uncertainty in ASR and how they can be addressed are also discussed. Finally, the broader potential of ASR is described, both for elucidating early evolutionary processes and for guiding the design of enzymes useful for industrial applications.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"169435"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning About Protein Stability and Functional Activity From Ancestral Reconstruction.\",\"authors\":\"Satoshi Akanuma\",\"doi\":\"10.1016/j.jmb.2025.169435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding how proteins have evolved to adapt their stability and function to changing temperatures remains a central question in molecular biology. While structural analyses, site-directed mutagenesis, and directed evolution have yielded valuable insights, ancestral sequence reconstruction (ASR) has recently emerged as a powerful tool for addressing the drivers behind protein evolution. Specifically, by enabling the inference and experimental characterization of reconstructed ancient proteins, ASR provides unique perspectives on the molecular mechanisms underlying both thermostability and low-temperature-adaptation. This review outlines the historical development of research on protein temperature adaptation and highlights the role of ASR in advancing the field. Selected case studies illustrate how ASR has uncovered structural and dynamic features associated with extreme thermostability or enhanced activity at low temperatures. Common sources of uncertainty in ASR and how they can be addressed are also discussed. Finally, the broader potential of ASR is described, both for elucidating early evolutionary processes and for guiding the design of enzymes useful for industrial applications.</p>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":\" \",\"pages\":\"169435\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmb.2025.169435\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.169435","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Learning About Protein Stability and Functional Activity From Ancestral Reconstruction.
Understanding how proteins have evolved to adapt their stability and function to changing temperatures remains a central question in molecular biology. While structural analyses, site-directed mutagenesis, and directed evolution have yielded valuable insights, ancestral sequence reconstruction (ASR) has recently emerged as a powerful tool for addressing the drivers behind protein evolution. Specifically, by enabling the inference and experimental characterization of reconstructed ancient proteins, ASR provides unique perspectives on the molecular mechanisms underlying both thermostability and low-temperature-adaptation. This review outlines the historical development of research on protein temperature adaptation and highlights the role of ASR in advancing the field. Selected case studies illustrate how ASR has uncovered structural and dynamic features associated with extreme thermostability or enhanced activity at low temperatures. Common sources of uncertainty in ASR and how they can be addressed are also discussed. Finally, the broader potential of ASR is described, both for elucidating early evolutionary processes and for guiding the design of enzymes useful for industrial applications.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.