利用核磁共振技术探索SARS-CoV-2核衣壳蛋白-肝素相互作用中的结构和动态复杂性。

IF 4.5 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tessa Bolognesi, Marco Schiavina, Cristina Ciabini, Michela Parafioriti, Cristina Gardini, Stefano Elli, Marco Guerrini, Roberta Pierattelli, Isabella C Felli
{"title":"利用核磁共振技术探索SARS-CoV-2核衣壳蛋白-肝素相互作用中的结构和动态复杂性。","authors":"Tessa Bolognesi, Marco Schiavina, Cristina Ciabini, Michela Parafioriti, Cristina Gardini, Stefano Elli, Marco Guerrini, Roberta Pierattelli, Isabella C Felli","doi":"10.1016/j.jmb.2025.169437","DOIUrl":null,"url":null,"abstract":"<p><p>Among the structural proteins of SARS-CoV-2, the nucleocapsid (N) protein stands out for its pronounced structural heterogeneity and multifunctionality throughout the viral life cycle. Recent studies have demonstrated that the N protein localizes to the surface of infected and neighboring non-infected cells, by interacting with heparan sulfate in the extracellular matrix. The N protein (419 residues) comprises two folded domains (<sup>44</sup>NTD<sup>180</sup> and <sup>249</sup>CTD<sup>361</sup>) interspersed with three intrinsically disordered regions (<sup>1</sup>IDR1<sup>43</sup>, <sup>181</sup>IDR2<sup>248</sup>, <sup>362</sup>IDR3<sup>419</sup>). The coexistence of ordered and disordered elements raises a key question: how does this structural heterogeneity influence N's interactions with biological partners? Here we employ high-resolution NMR spectroscopy as the primary technique to characterize the interaction of three N protein constructs (<sup>44</sup>NTD<sup>180</sup>, <sup>1</sup>NTR<sup>248</sup>, and <sup>1</sup>N<sup>419</sup>) with heparin-based ligands of increasing complexity. NMR provides atomic level information on the structured NTD domain and on the otherwise difficult to investigate flexible regions. Molecular dynamics simulations further probe the interaction between NTD and short heparin oligosaccharides. Our data reveal a clear correlation between ligand size and binding affinity: longer saccharide chains promote stronger binding. Additionally, the inclusion of intrinsically disordered regions in the NTR construct significantly enhances the interaction compared to NTD, highlighting the functional relevance of structural disorder. Finally, the full-length protein exhibits distinct spectral behavior with the investigated heparin-based ligand, potentially reflecting additional binding contributions and altered dynamics arising from its complex structure. These findings underscore the utility of NMR spectroscopy in elucidating the dynamic, multivalent nature of protein-polyanion interactions, particularly in highly flexible proteins with a modular domain organization.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"169437"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Role of Structural and Dynamic Complexity in SARS-CoV-2 Nucleocapsid Protein-Heparin Interactions by NMR.\",\"authors\":\"Tessa Bolognesi, Marco Schiavina, Cristina Ciabini, Michela Parafioriti, Cristina Gardini, Stefano Elli, Marco Guerrini, Roberta Pierattelli, Isabella C Felli\",\"doi\":\"10.1016/j.jmb.2025.169437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Among the structural proteins of SARS-CoV-2, the nucleocapsid (N) protein stands out for its pronounced structural heterogeneity and multifunctionality throughout the viral life cycle. Recent studies have demonstrated that the N protein localizes to the surface of infected and neighboring non-infected cells, by interacting with heparan sulfate in the extracellular matrix. The N protein (419 residues) comprises two folded domains (<sup>44</sup>NTD<sup>180</sup> and <sup>249</sup>CTD<sup>361</sup>) interspersed with three intrinsically disordered regions (<sup>1</sup>IDR1<sup>43</sup>, <sup>181</sup>IDR2<sup>248</sup>, <sup>362</sup>IDR3<sup>419</sup>). The coexistence of ordered and disordered elements raises a key question: how does this structural heterogeneity influence N's interactions with biological partners? Here we employ high-resolution NMR spectroscopy as the primary technique to characterize the interaction of three N protein constructs (<sup>44</sup>NTD<sup>180</sup>, <sup>1</sup>NTR<sup>248</sup>, and <sup>1</sup>N<sup>419</sup>) with heparin-based ligands of increasing complexity. NMR provides atomic level information on the structured NTD domain and on the otherwise difficult to investigate flexible regions. Molecular dynamics simulations further probe the interaction between NTD and short heparin oligosaccharides. Our data reveal a clear correlation between ligand size and binding affinity: longer saccharide chains promote stronger binding. Additionally, the inclusion of intrinsically disordered regions in the NTR construct significantly enhances the interaction compared to NTD, highlighting the functional relevance of structural disorder. Finally, the full-length protein exhibits distinct spectral behavior with the investigated heparin-based ligand, potentially reflecting additional binding contributions and altered dynamics arising from its complex structure. These findings underscore the utility of NMR spectroscopy in elucidating the dynamic, multivalent nature of protein-polyanion interactions, particularly in highly flexible proteins with a modular domain organization.</p>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":\" \",\"pages\":\"169437\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmb.2025.169437\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.169437","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在SARS-CoV-2的结构蛋白中,核衣壳蛋白(N)因其在整个病毒生命周期中具有明显的结构异质性和多功能性而引人注目。最近的研究表明,N蛋白通过与细胞外基质中的硫酸肝素相互作用,定位于感染细胞和邻近非感染细胞的表面。N蛋白(419个残基)由两个折叠结构域(44NTD180和249CTD361)和三个内在无序区域(1IDR143, 181IDR2248, 362IDR3419)组成。有序和无序元素的共存提出了一个关键问题:这种结构异质性如何影响N与生物伴侣的相互作用?在这里,我们采用高分辨率核磁共振波谱作为主要技术来表征三种N蛋白结构(44NTD180, 1NTR248和1N419)与日益复杂的肝素基配体的相互作用。核磁共振提供了结构化NTD域和其他难以研究的柔性区域的原子水平信息。分子动力学模拟进一步探讨了NTD与短肝素寡糖之间的相互作用。我们的数据揭示了配体大小和结合亲和力之间的明确相关性:更长的糖链促进更强的结合。此外,与NTD相比,在NTR结构中包含内在无序区域显著增强了相互作用,突出了结构紊乱的功能相关性。最后,全长蛋白与所研究的肝素基配体表现出不同的光谱行为,可能反映了其复杂结构引起的额外结合贡献和改变的动力学。这些发现强调了核磁共振波谱在阐明蛋白质-聚阴离子相互作用的动态、多价性质方面的效用,特别是在具有模块化结构域组织的高度柔性蛋白质中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Role of Structural and Dynamic Complexity in SARS-CoV-2 Nucleocapsid Protein-Heparin Interactions by NMR.

Among the structural proteins of SARS-CoV-2, the nucleocapsid (N) protein stands out for its pronounced structural heterogeneity and multifunctionality throughout the viral life cycle. Recent studies have demonstrated that the N protein localizes to the surface of infected and neighboring non-infected cells, by interacting with heparan sulfate in the extracellular matrix. The N protein (419 residues) comprises two folded domains (44NTD180 and 249CTD361) interspersed with three intrinsically disordered regions (1IDR143, 181IDR2248, 362IDR3419). The coexistence of ordered and disordered elements raises a key question: how does this structural heterogeneity influence N's interactions with biological partners? Here we employ high-resolution NMR spectroscopy as the primary technique to characterize the interaction of three N protein constructs (44NTD180, 1NTR248, and 1N419) with heparin-based ligands of increasing complexity. NMR provides atomic level information on the structured NTD domain and on the otherwise difficult to investigate flexible regions. Molecular dynamics simulations further probe the interaction between NTD and short heparin oligosaccharides. Our data reveal a clear correlation between ligand size and binding affinity: longer saccharide chains promote stronger binding. Additionally, the inclusion of intrinsically disordered regions in the NTR construct significantly enhances the interaction compared to NTD, highlighting the functional relevance of structural disorder. Finally, the full-length protein exhibits distinct spectral behavior with the investigated heparin-based ligand, potentially reflecting additional binding contributions and altered dynamics arising from its complex structure. These findings underscore the utility of NMR spectroscopy in elucidating the dynamic, multivalent nature of protein-polyanion interactions, particularly in highly flexible proteins with a modular domain organization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信