5G海量MIMO无线通信系统中混合波束形成和高精度信道估计的优化双注意力卷积神经网络

IF 0.5 Q4 TELECOMMUNICATIONS
Sandeep Prabhu, Humaira Nishat, Shreenidhi Krishnamurthy Subramaniyan, Harishchander Anandaram, Shargunam Selvam
{"title":"5G海量MIMO无线通信系统中混合波束形成和高精度信道估计的优化双注意力卷积神经网络","authors":"Sandeep Prabhu,&nbsp;Humaira Nishat,&nbsp;Shreenidhi Krishnamurthy Subramaniyan,&nbsp;Harishchander Anandaram,&nbsp;Shargunam Selvam","doi":"10.1002/itl2.70129","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Beamforming and channel estimation are fundamental components of 5G massive MIMO (multiple-input–multiple-output) systems, particularly in the millimeter-wave (mmWave) spectrum, where high-frequency transmissions are susceptible to path loss and signal degradation. The growing demand for ultrareliable low-latency communication (URLLC) and high-quality services necessitates advanced, adaptive techniques to manage the highly dynamic nature of mmWave channels. This study proposes a novel framework that integrates dual-attention convolutional neural networks (DSCN-PAN) with reformed poplar optimization (RePO) to enhance beamforming accuracy and channel estimation efficiency in 5G massive MIMO systems. Compared to conventional methods, the proposed model demonstrates significant performance gains, including over 90% improvement in spectral efficiency, 99.41% beam alignment precision, a 99.5% enhancement in Channel State Information (CSI) estimation, and a 99.2% reduction in bit error rate (BER). The DSCN-PAN-RePO architecture effectively supports dynamic and complex communication environments, offering a scalable and energy-efficient solution for next-generation wireless networks.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 6","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Dual-Attention Convolutional Neural Networks for Hybrid Beamforming and High-Precision Channel Estimation in 5G Massive MIMO Wireless Communications Systems\",\"authors\":\"Sandeep Prabhu,&nbsp;Humaira Nishat,&nbsp;Shreenidhi Krishnamurthy Subramaniyan,&nbsp;Harishchander Anandaram,&nbsp;Shargunam Selvam\",\"doi\":\"10.1002/itl2.70129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Beamforming and channel estimation are fundamental components of 5G massive MIMO (multiple-input–multiple-output) systems, particularly in the millimeter-wave (mmWave) spectrum, where high-frequency transmissions are susceptible to path loss and signal degradation. The growing demand for ultrareliable low-latency communication (URLLC) and high-quality services necessitates advanced, adaptive techniques to manage the highly dynamic nature of mmWave channels. This study proposes a novel framework that integrates dual-attention convolutional neural networks (DSCN-PAN) with reformed poplar optimization (RePO) to enhance beamforming accuracy and channel estimation efficiency in 5G massive MIMO systems. Compared to conventional methods, the proposed model demonstrates significant performance gains, including over 90% improvement in spectral efficiency, 99.41% beam alignment precision, a 99.5% enhancement in Channel State Information (CSI) estimation, and a 99.2% reduction in bit error rate (BER). The DSCN-PAN-RePO architecture effectively supports dynamic and complex communication environments, offering a scalable and energy-efficient solution for next-generation wireless networks.</p>\\n </div>\",\"PeriodicalId\":100725,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":\"8 6\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

波束形成和信道估计是5G大规模MIMO(多输入多输出)系统的基本组成部分,特别是在毫米波(mmWave)频谱中,高频传输容易受到路径损耗和信号退化的影响。对超可靠低延迟通信(URLLC)和高质量服务日益增长的需求需要先进的自适应技术来管理毫米波信道的高度动态特性。本研究提出了一种将双注意卷积神经网络(DSCN-PAN)与改良杨树优化(RePO)相结合的新框架,以提高5G大规模MIMO系统的波束形成精度和信道估计效率。与传统方法相比,该模型具有显著的性能提升,包括频谱效率提高90%以上,波束对准精度提高99.41%,信道状态信息(CSI)估计提高99.5%,误码率(BER)降低99.2%。DSCN-PAN-RePO架构有效地支持动态和复杂的通信环境,为下一代无线网络提供可扩展和节能的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized Dual-Attention Convolutional Neural Networks for Hybrid Beamforming and High-Precision Channel Estimation in 5G Massive MIMO Wireless Communications Systems

Beamforming and channel estimation are fundamental components of 5G massive MIMO (multiple-input–multiple-output) systems, particularly in the millimeter-wave (mmWave) spectrum, where high-frequency transmissions are susceptible to path loss and signal degradation. The growing demand for ultrareliable low-latency communication (URLLC) and high-quality services necessitates advanced, adaptive techniques to manage the highly dynamic nature of mmWave channels. This study proposes a novel framework that integrates dual-attention convolutional neural networks (DSCN-PAN) with reformed poplar optimization (RePO) to enhance beamforming accuracy and channel estimation efficiency in 5G massive MIMO systems. Compared to conventional methods, the proposed model demonstrates significant performance gains, including over 90% improvement in spectral efficiency, 99.41% beam alignment precision, a 99.5% enhancement in Channel State Information (CSI) estimation, and a 99.2% reduction in bit error rate (BER). The DSCN-PAN-RePO architecture effectively supports dynamic and complex communication environments, offering a scalable and energy-efficient solution for next-generation wireless networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信