使用大型语言模型和漏洞本体的自动化漏洞评估

IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ai Magazine Pub Date : 2025-09-15 DOI:10.1002/aaai.70031
Rikhiya Ghosh, Hans-Martin von Stockhausen, Martin Schmitt, George Marica Vasile, Sanjeev Kumar Karn, Oladimeji Farri
{"title":"使用大型语言模型和漏洞本体的自动化漏洞评估","authors":"Rikhiya Ghosh,&nbsp;Hans-Martin von Stockhausen,&nbsp;Martin Schmitt,&nbsp;George Marica Vasile,&nbsp;Sanjeev Kumar Karn,&nbsp;Oladimeji Farri","doi":"10.1002/aaai.70031","DOIUrl":null,"url":null,"abstract":"<p>The National Vulnerability Database (NVD) publishes over a thousand new vulnerabilities monthly, with a projected 25 percent increase in 2024, highlighting the crucial need for rapid vulnerability identification to mitigate cybersecurity attacks and save costs and resources. In this work, we propose using large language models (LLMs) to learn vulnerability evaluation from historical assessments of medical device vulnerabilities in a single manufacturer's portfolio. We highlight the effectiveness and challenges of using LLMs for automatic vulnerability evaluation and introduce a method to enrich historical data with cybersecurity ontologies, enabling the system to understand new vulnerabilities without retraining the LLM. Our LLM system integrates with the in-house application—Cybersecurity Management System (CSMS)—to help Siemens Healthineers (SHS) product cybersecurity experts efficiently assess the vulnerabilities in our products. Also, we present a comprehensive set of experiments that helps showcase the properties of the LLM and dataset, the various guardrails we have implemented to safeguard the system in production, and the guidelines for efficient integration of LLMs into the cybersecurity tool.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"46 3","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70031","citationCount":"0","resultStr":"{\"title\":\"Automated vulnerability evaluation with large language models and vulnerability ontologies\",\"authors\":\"Rikhiya Ghosh,&nbsp;Hans-Martin von Stockhausen,&nbsp;Martin Schmitt,&nbsp;George Marica Vasile,&nbsp;Sanjeev Kumar Karn,&nbsp;Oladimeji Farri\",\"doi\":\"10.1002/aaai.70031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The National Vulnerability Database (NVD) publishes over a thousand new vulnerabilities monthly, with a projected 25 percent increase in 2024, highlighting the crucial need for rapid vulnerability identification to mitigate cybersecurity attacks and save costs and resources. In this work, we propose using large language models (LLMs) to learn vulnerability evaluation from historical assessments of medical device vulnerabilities in a single manufacturer's portfolio. We highlight the effectiveness and challenges of using LLMs for automatic vulnerability evaluation and introduce a method to enrich historical data with cybersecurity ontologies, enabling the system to understand new vulnerabilities without retraining the LLM. Our LLM system integrates with the in-house application—Cybersecurity Management System (CSMS)—to help Siemens Healthineers (SHS) product cybersecurity experts efficiently assess the vulnerabilities in our products. Also, we present a comprehensive set of experiments that helps showcase the properties of the LLM and dataset, the various guardrails we have implemented to safeguard the system in production, and the guidelines for efficient integration of LLMs into the cybersecurity tool.</p>\",\"PeriodicalId\":7854,\"journal\":{\"name\":\"Ai Magazine\",\"volume\":\"46 3\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70031\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Magazine\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aaai.70031\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.70031","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

国家漏洞数据库(NVD)每月发布1000多个新漏洞,预计到2024年将增加25%,这凸显了快速识别漏洞以减轻网络安全攻击并节省成本和资源的关键需求。在这项工作中,我们建议使用大型语言模型(llm)从单个制造商组合中的医疗设备漏洞的历史评估中学习漏洞评估。我们强调了使用LLM进行自动漏洞评估的有效性和挑战,并引入了一种使用网络安全本体丰富历史数据的方法,使系统能够在不重新训练LLM的情况下理解新的漏洞。我们的法学硕士系统集成了内部应用程序网络安全管理系统(csm),以帮助西门子医疗(SHS)产品网络安全专家有效地评估我们产品中的漏洞。此外,我们还提供了一组全面的实验,有助于展示LLM和数据集的属性,我们为保护生产中的系统而实施的各种护栏,以及将LLM有效集成到网络安全工具中的指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Automated vulnerability evaluation with large language models and vulnerability ontologies

Automated vulnerability evaluation with large language models and vulnerability ontologies

The National Vulnerability Database (NVD) publishes over a thousand new vulnerabilities monthly, with a projected 25 percent increase in 2024, highlighting the crucial need for rapid vulnerability identification to mitigate cybersecurity attacks and save costs and resources. In this work, we propose using large language models (LLMs) to learn vulnerability evaluation from historical assessments of medical device vulnerabilities in a single manufacturer's portfolio. We highlight the effectiveness and challenges of using LLMs for automatic vulnerability evaluation and introduce a method to enrich historical data with cybersecurity ontologies, enabling the system to understand new vulnerabilities without retraining the LLM. Our LLM system integrates with the in-house application—Cybersecurity Management System (CSMS)—to help Siemens Healthineers (SHS) product cybersecurity experts efficiently assess the vulnerabilities in our products. Also, we present a comprehensive set of experiments that helps showcase the properties of the LLM and dataset, the various guardrails we have implemented to safeguard the system in production, and the guidelines for efficient integration of LLMs into the cybersecurity tool.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ai Magazine
Ai Magazine 工程技术-计算机:人工智能
CiteScore
3.90
自引率
11.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信