Rikhiya Ghosh, Hans-Martin von Stockhausen, Martin Schmitt, George Marica Vasile, Sanjeev Kumar Karn, Oladimeji Farri
{"title":"使用大型语言模型和漏洞本体的自动化漏洞评估","authors":"Rikhiya Ghosh, Hans-Martin von Stockhausen, Martin Schmitt, George Marica Vasile, Sanjeev Kumar Karn, Oladimeji Farri","doi":"10.1002/aaai.70031","DOIUrl":null,"url":null,"abstract":"<p>The National Vulnerability Database (NVD) publishes over a thousand new vulnerabilities monthly, with a projected 25 percent increase in 2024, highlighting the crucial need for rapid vulnerability identification to mitigate cybersecurity attacks and save costs and resources. In this work, we propose using large language models (LLMs) to learn vulnerability evaluation from historical assessments of medical device vulnerabilities in a single manufacturer's portfolio. We highlight the effectiveness and challenges of using LLMs for automatic vulnerability evaluation and introduce a method to enrich historical data with cybersecurity ontologies, enabling the system to understand new vulnerabilities without retraining the LLM. Our LLM system integrates with the in-house application—Cybersecurity Management System (CSMS)—to help Siemens Healthineers (SHS) product cybersecurity experts efficiently assess the vulnerabilities in our products. Also, we present a comprehensive set of experiments that helps showcase the properties of the LLM and dataset, the various guardrails we have implemented to safeguard the system in production, and the guidelines for efficient integration of LLMs into the cybersecurity tool.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"46 3","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70031","citationCount":"0","resultStr":"{\"title\":\"Automated vulnerability evaluation with large language models and vulnerability ontologies\",\"authors\":\"Rikhiya Ghosh, Hans-Martin von Stockhausen, Martin Schmitt, George Marica Vasile, Sanjeev Kumar Karn, Oladimeji Farri\",\"doi\":\"10.1002/aaai.70031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The National Vulnerability Database (NVD) publishes over a thousand new vulnerabilities monthly, with a projected 25 percent increase in 2024, highlighting the crucial need for rapid vulnerability identification to mitigate cybersecurity attacks and save costs and resources. In this work, we propose using large language models (LLMs) to learn vulnerability evaluation from historical assessments of medical device vulnerabilities in a single manufacturer's portfolio. We highlight the effectiveness and challenges of using LLMs for automatic vulnerability evaluation and introduce a method to enrich historical data with cybersecurity ontologies, enabling the system to understand new vulnerabilities without retraining the LLM. Our LLM system integrates with the in-house application—Cybersecurity Management System (CSMS)—to help Siemens Healthineers (SHS) product cybersecurity experts efficiently assess the vulnerabilities in our products. Also, we present a comprehensive set of experiments that helps showcase the properties of the LLM and dataset, the various guardrails we have implemented to safeguard the system in production, and the guidelines for efficient integration of LLMs into the cybersecurity tool.</p>\",\"PeriodicalId\":7854,\"journal\":{\"name\":\"Ai Magazine\",\"volume\":\"46 3\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.70031\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Magazine\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aaai.70031\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.70031","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Automated vulnerability evaluation with large language models and vulnerability ontologies
The National Vulnerability Database (NVD) publishes over a thousand new vulnerabilities monthly, with a projected 25 percent increase in 2024, highlighting the crucial need for rapid vulnerability identification to mitigate cybersecurity attacks and save costs and resources. In this work, we propose using large language models (LLMs) to learn vulnerability evaluation from historical assessments of medical device vulnerabilities in a single manufacturer's portfolio. We highlight the effectiveness and challenges of using LLMs for automatic vulnerability evaluation and introduce a method to enrich historical data with cybersecurity ontologies, enabling the system to understand new vulnerabilities without retraining the LLM. Our LLM system integrates with the in-house application—Cybersecurity Management System (CSMS)—to help Siemens Healthineers (SHS) product cybersecurity experts efficiently assess the vulnerabilities in our products. Also, we present a comprehensive set of experiments that helps showcase the properties of the LLM and dataset, the various guardrails we have implemented to safeguard the system in production, and the guidelines for efficient integration of LLMs into the cybersecurity tool.
期刊介绍:
AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.