{"title":"欧盟委员会关于植物新基因组技术的监管建议:关注等效性、复杂性和人工智能","authors":"Juliane Mundorf, Samson Simon, Margret Engelhard","doi":"10.1186/s12302-025-01199-2","DOIUrl":null,"url":null,"abstract":"<div><p>The European Commission has proposed to amend the EU GMO regulation, exempting certain genetically modified plants generated with new genomic techniques (NGTs) from risk assessment. In the suggested <i>lex specialis</i> so-called “category 1 NGT plants” would be treated as equivalent to conventionally bred plants, if they meet threshold-based criteria, which limit the number and size of induced genetic changes. Here, we critically analyze the scientific validity of these thresholds and show that the proposal oversimplifies genetic complexity—disregarding the biological context, mutational bias, and functional consequences. The proposal’s central claim of equivalence between NGT1 plants and conventionally bred plants is thus scientifically unfounded. Many conceivable genetic modifications produced with NGTs—including those created with CRISPR prime editing and AI-assisted design—could be highly complex and exceed the capabilities of conventional breeding. Nevertheless, the regulatory proposal treats all possible genetic changes as equally likely and overlooks the purpose and function of genetic edits. By eliminating case-by-case risk assessment, the proposal creates a regulatory gap that allows complex and novel traits to bypass scrutiny—undermining the EU’s legally binding precautionary principle. In contrast, a risk-based regulatory approach is needed to ensure safe and future-proof oversight of NGT plants.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"37 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s12302-025-01199-2.pdf","citationCount":"0","resultStr":"{\"title\":\"The European Commission’s regulatory proposal on new genomic techniques in plants: a focus on equivalence, complexity, and artificial intelligence\",\"authors\":\"Juliane Mundorf, Samson Simon, Margret Engelhard\",\"doi\":\"10.1186/s12302-025-01199-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The European Commission has proposed to amend the EU GMO regulation, exempting certain genetically modified plants generated with new genomic techniques (NGTs) from risk assessment. In the suggested <i>lex specialis</i> so-called “category 1 NGT plants” would be treated as equivalent to conventionally bred plants, if they meet threshold-based criteria, which limit the number and size of induced genetic changes. Here, we critically analyze the scientific validity of these thresholds and show that the proposal oversimplifies genetic complexity—disregarding the biological context, mutational bias, and functional consequences. The proposal’s central claim of equivalence between NGT1 plants and conventionally bred plants is thus scientifically unfounded. Many conceivable genetic modifications produced with NGTs—including those created with CRISPR prime editing and AI-assisted design—could be highly complex and exceed the capabilities of conventional breeding. Nevertheless, the regulatory proposal treats all possible genetic changes as equally likely and overlooks the purpose and function of genetic edits. By eliminating case-by-case risk assessment, the proposal creates a regulatory gap that allows complex and novel traits to bypass scrutiny—undermining the EU’s legally binding precautionary principle. In contrast, a risk-based regulatory approach is needed to ensure safe and future-proof oversight of NGT plants.</p></div>\",\"PeriodicalId\":546,\"journal\":{\"name\":\"Environmental Sciences Europe\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s12302-025-01199-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Sciences Europe\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s12302-025-01199-2\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Europe","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1186/s12302-025-01199-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The European Commission’s regulatory proposal on new genomic techniques in plants: a focus on equivalence, complexity, and artificial intelligence
The European Commission has proposed to amend the EU GMO regulation, exempting certain genetically modified plants generated with new genomic techniques (NGTs) from risk assessment. In the suggested lex specialis so-called “category 1 NGT plants” would be treated as equivalent to conventionally bred plants, if they meet threshold-based criteria, which limit the number and size of induced genetic changes. Here, we critically analyze the scientific validity of these thresholds and show that the proposal oversimplifies genetic complexity—disregarding the biological context, mutational bias, and functional consequences. The proposal’s central claim of equivalence between NGT1 plants and conventionally bred plants is thus scientifically unfounded. Many conceivable genetic modifications produced with NGTs—including those created with CRISPR prime editing and AI-assisted design—could be highly complex and exceed the capabilities of conventional breeding. Nevertheless, the regulatory proposal treats all possible genetic changes as equally likely and overlooks the purpose and function of genetic edits. By eliminating case-by-case risk assessment, the proposal creates a regulatory gap that allows complex and novel traits to bypass scrutiny—undermining the EU’s legally binding precautionary principle. In contrast, a risk-based regulatory approach is needed to ensure safe and future-proof oversight of NGT plants.
期刊介绍:
ESEU is an international journal, focusing primarily on Europe, with a broad scope covering all aspects of environmental sciences, including the main topic regulation.
ESEU will discuss the entanglement between environmental sciences and regulation because, in recent years, there have been misunderstandings and even disagreement between stakeholders in these two areas. ESEU will help to improve the comprehension of issues between environmental sciences and regulation.
ESEU will be an outlet from the German-speaking (DACH) countries to Europe and an inlet from Europe to the DACH countries regarding environmental sciences and regulation.
Moreover, ESEU will facilitate the exchange of ideas and interaction between Europe and the DACH countries regarding environmental regulatory issues.
Although Europe is at the center of ESEU, the journal will not exclude the rest of the world, because regulatory issues pertaining to environmental sciences can be fully seen only from a global perspective.