薄域上具有非线性噪声的随机拟线性抛物方程不变测度的极限行为

IF 1.7 2区 数学 Q2 MATHEMATICS, APPLIED
Zhe Pu, Dingshi Li
{"title":"薄域上具有非线性噪声的随机拟线性抛物方程不变测度的极限行为","authors":"Zhe Pu,&nbsp;Dingshi Li","doi":"10.1007/s00245-025-10311-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the limiting behavior of invariant measures is mainly investigated for a class of stochastic quasilinear parabolic equations with nonlinear noise on thin domains. The existence and uniqueness of invariant measure on <span>\\((n+1)\\)</span>-dimensional thin domains are presented. The difficulty on estimates of the solutions for such problems in Sobolev space in the sense of thin domains is overcome by a novel proof techniques. Hence, the research results reveal that any limit of invariant measures of original equations on thin domains must be an invariant measure of the limiting equations when the <span>\\((n+1)\\)</span>-dimensional thin domains degenerates onto the <i>n</i>-dimensional space.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"92 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limiting Behavior of Invariant Measures for Stochastic Quasilinear Parabolic Equations with Nonlinear Noise on Thin Domains\",\"authors\":\"Zhe Pu,&nbsp;Dingshi Li\",\"doi\":\"10.1007/s00245-025-10311-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the limiting behavior of invariant measures is mainly investigated for a class of stochastic quasilinear parabolic equations with nonlinear noise on thin domains. The existence and uniqueness of invariant measure on <span>\\\\((n+1)\\\\)</span>-dimensional thin domains are presented. The difficulty on estimates of the solutions for such problems in Sobolev space in the sense of thin domains is overcome by a novel proof techniques. Hence, the research results reveal that any limit of invariant measures of original equations on thin domains must be an invariant measure of the limiting equations when the <span>\\\\((n+1)\\\\)</span>-dimensional thin domains degenerates onto the <i>n</i>-dimensional space.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"92 2\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-025-10311-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-025-10311-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究了一类具有非线性噪声的随机拟线性抛物型方程在薄域上不变测度的极限行为。给出了\((n+1)\)维薄域上不变测度的存在唯一性。利用一种新的证明技术,克服了在Sobolev空间薄域意义上估计这类问题解的困难。因此,研究结果表明,当\((n+1)\)维薄域退化到n维空间时,原始方程在薄域上的不变测度的任何极限都必须是极限方程的不变测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limiting Behavior of Invariant Measures for Stochastic Quasilinear Parabolic Equations with Nonlinear Noise on Thin Domains

In this paper, the limiting behavior of invariant measures is mainly investigated for a class of stochastic quasilinear parabolic equations with nonlinear noise on thin domains. The existence and uniqueness of invariant measure on \((n+1)\)-dimensional thin domains are presented. The difficulty on estimates of the solutions for such problems in Sobolev space in the sense of thin domains is overcome by a novel proof techniques. Hence, the research results reveal that any limit of invariant measures of original equations on thin domains must be an invariant measure of the limiting equations when the \((n+1)\)-dimensional thin domains degenerates onto the n-dimensional space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信