自愈智能配电系统的供电恢复研究进展

Q2 Energy
Mohamed Goda, Mazen Abdel-Salam, Mohamed-Tharwat EL-Mohandes, Ahmed Elnozahy
{"title":"自愈智能配电系统的供电恢复研究进展","authors":"Mohamed Goda,&nbsp;Mazen Abdel-Salam,&nbsp;Mohamed-Tharwat EL-Mohandes,&nbsp;Ahmed Elnozahy","doi":"10.1186/s42162-025-00541-5","DOIUrl":null,"url":null,"abstract":"<div><p>System restoration is aimed at ensuring continuity of the electric supply to all loads in a distribution system under abnormal conditions without violating electrical-constraints. This adds the feature of “self-healing” to the distribution system to make it as smart system. This paper presents a literature survey of published research techniques on electric supply restoration over the period 1981–2024. Four categories of distribution systems with different attributes are proposed by the present authors to compare fairly among these techniques through implementation and running the necessary codes for each restoration technique. Comparisons are concerned with contribution, adopted technique, test model, advantages and disadvantages as well as utilization of renewables. To meet the electrical-constraints on electric supply restoration, fifteen challenges are selected, reviewed and discussed within the comparisons. The algorithms based on graph theory showed better performance regarding the challenges related to minimizing the energy-not-supplied, achieving self-healing dream, preventing feeder overloading and maintaining the voltage profile within limits when compared with other algorithms. The algorithms based on linear and nonlinear programming showed better performance concerning the challenges related to minimizing restoration time and preventing in-supply load shedding when compared with other algorithms. The algorithms based on heuristics and metaheuristics showed better performance concerning the challenges related to system configuration, generating optimal sequence of switches, minimizing the number of ordered switches and reducing the restoration cost when compared with other algorithms. The future trends of the supply restoration in smart distribution systems are also discussed. The present survey is concluded with a summary of the findings from the literature survey and outlines potential directions for future research. It highlights the key opportunities to support researchers in advancing more intelligent restoration strategies for electric supply in smart distribution systems.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00541-5","citationCount":"0","resultStr":"{\"title\":\"Electric supply restoration in self-healed smart distribution systems: a review\",\"authors\":\"Mohamed Goda,&nbsp;Mazen Abdel-Salam,&nbsp;Mohamed-Tharwat EL-Mohandes,&nbsp;Ahmed Elnozahy\",\"doi\":\"10.1186/s42162-025-00541-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>System restoration is aimed at ensuring continuity of the electric supply to all loads in a distribution system under abnormal conditions without violating electrical-constraints. This adds the feature of “self-healing” to the distribution system to make it as smart system. This paper presents a literature survey of published research techniques on electric supply restoration over the period 1981–2024. Four categories of distribution systems with different attributes are proposed by the present authors to compare fairly among these techniques through implementation and running the necessary codes for each restoration technique. Comparisons are concerned with contribution, adopted technique, test model, advantages and disadvantages as well as utilization of renewables. To meet the electrical-constraints on electric supply restoration, fifteen challenges are selected, reviewed and discussed within the comparisons. The algorithms based on graph theory showed better performance regarding the challenges related to minimizing the energy-not-supplied, achieving self-healing dream, preventing feeder overloading and maintaining the voltage profile within limits when compared with other algorithms. The algorithms based on linear and nonlinear programming showed better performance concerning the challenges related to minimizing restoration time and preventing in-supply load shedding when compared with other algorithms. The algorithms based on heuristics and metaheuristics showed better performance concerning the challenges related to system configuration, generating optimal sequence of switches, minimizing the number of ordered switches and reducing the restoration cost when compared with other algorithms. The future trends of the supply restoration in smart distribution systems are also discussed. The present survey is concluded with a summary of the findings from the literature survey and outlines potential directions for future research. It highlights the key opportunities to support researchers in advancing more intelligent restoration strategies for electric supply in smart distribution systems.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00541-5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-025-00541-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00541-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

系统恢复的目的是在不违反电力约束的情况下,保证在异常情况下配电系统中所有负荷的电力供应不中断。这为配电系统增加了“自我修复”的特性,使其成为智能系统。本文介绍了1981-2024年期间已发表的电力供应恢复研究技术的文献综述。本文提出了四类具有不同属性的配电系统,通过实现和运行每一种恢复技术所需的代码,对这些技术进行公平的比较。比较了可再生能源的贡献、采用的技术、试验模型、优缺点以及利用情况。为了满足电力供应恢复的电力约束,在比较中选择,审查和讨论了15个挑战。与其他算法相比,基于图论的算法在最小化无供能、实现自愈梦想、防止馈线过载和保持电压分布在限制范围内等方面表现出更好的性能。与其他算法相比,基于线性和非线性规划的算法在最小化恢复时间和防止供电负荷下降方面表现出更好的性能。与其他算法相比,基于启发式和元启发式的算法在系统配置挑战、生成最优交换机序列、最小化有序交换机数量和降低恢复成本等方面表现出更好的性能。讨论了智能配电系统供电恢复的未来发展趋势。本文总结了文献调查的结果,并概述了未来研究的可能方向。它强调了支持研究人员在智能配电系统中推进更智能的电力供应恢复策略的关键机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electric supply restoration in self-healed smart distribution systems: a review

System restoration is aimed at ensuring continuity of the electric supply to all loads in a distribution system under abnormal conditions without violating electrical-constraints. This adds the feature of “self-healing” to the distribution system to make it as smart system. This paper presents a literature survey of published research techniques on electric supply restoration over the period 1981–2024. Four categories of distribution systems with different attributes are proposed by the present authors to compare fairly among these techniques through implementation and running the necessary codes for each restoration technique. Comparisons are concerned with contribution, adopted technique, test model, advantages and disadvantages as well as utilization of renewables. To meet the electrical-constraints on electric supply restoration, fifteen challenges are selected, reviewed and discussed within the comparisons. The algorithms based on graph theory showed better performance regarding the challenges related to minimizing the energy-not-supplied, achieving self-healing dream, preventing feeder overloading and maintaining the voltage profile within limits when compared with other algorithms. The algorithms based on linear and nonlinear programming showed better performance concerning the challenges related to minimizing restoration time and preventing in-supply load shedding when compared with other algorithms. The algorithms based on heuristics and metaheuristics showed better performance concerning the challenges related to system configuration, generating optimal sequence of switches, minimizing the number of ordered switches and reducing the restoration cost when compared with other algorithms. The future trends of the supply restoration in smart distribution systems are also discussed. The present survey is concluded with a summary of the findings from the literature survey and outlines potential directions for future research. It highlights the key opportunities to support researchers in advancing more intelligent restoration strategies for electric supply in smart distribution systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信