通过GaN/g-C3N4异质结工程增强析氢动力学

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2025-08-26 DOI:10.1039/D5CE00615E
Xiangrong Li, Mengzhou Wu, Yanling Wang, Wentao Qu and Guoqiang Li
{"title":"通过GaN/g-C3N4异质结工程增强析氢动力学","authors":"Xiangrong Li, Mengzhou Wu, Yanling Wang, Wentao Qu and Guoqiang Li","doi":"10.1039/D5CE00615E","DOIUrl":null,"url":null,"abstract":"<p >Among various semiconductors evaluated for photoelectrochemical (PEC) water splitting, gallium nitride (GaN) has emerged as a promising photoelectrode material due to its wide, direct bandgap, which allows for more efficient sunlight utilization. To address the issue of severe surface states that hinder its performance, graphitic carbon nitride (g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>) was introduced as a passivation layer. The resulting GaN/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> heterojunction demonstrates a significant enhancement in PEC performance compared to pristine GaN nanorods (NRs), including a notable increase in photocurrent density. Importantly, this heterostructure is also capable of driving PEC water splitting under zero external bias, which is primarily attributed to the efficient charge separation and transfer enabled by the Z-scheme mechanism. Overall, this study offers a novel strategy for passivating surface states in nanomaterials and underscores the promising role of g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> in PEC water splitting applications.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 36","pages":" 6048-6055"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced hydrogen evolution kinetics via GaN/g-C3N4 heterojunction engineering\",\"authors\":\"Xiangrong Li, Mengzhou Wu, Yanling Wang, Wentao Qu and Guoqiang Li\",\"doi\":\"10.1039/D5CE00615E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Among various semiconductors evaluated for photoelectrochemical (PEC) water splitting, gallium nitride (GaN) has emerged as a promising photoelectrode material due to its wide, direct bandgap, which allows for more efficient sunlight utilization. To address the issue of severe surface states that hinder its performance, graphitic carbon nitride (g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>) was introduced as a passivation layer. The resulting GaN/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> heterojunction demonstrates a significant enhancement in PEC performance compared to pristine GaN nanorods (NRs), including a notable increase in photocurrent density. Importantly, this heterostructure is also capable of driving PEC water splitting under zero external bias, which is primarily attributed to the efficient charge separation and transfer enabled by the Z-scheme mechanism. Overall, this study offers a novel strategy for passivating surface states in nanomaterials and underscores the promising role of g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> in PEC water splitting applications.</p>\",\"PeriodicalId\":70,\"journal\":{\"name\":\"CrystEngComm\",\"volume\":\" 36\",\"pages\":\" 6048-6055\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CrystEngComm\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00615e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00615e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在评估用于光电化学(PEC)水分解的各种半导体中,氮化镓(GaN)由于其宽,直接的带隙,允许更有效地利用阳光而成为一种有前途的光电极材料。为了解决严重的表面状态阻碍其性能的问题,引入了石墨氮化碳(g-C3N4)作为钝化层。与原始GaN纳米棒(NRs)相比,GaN/g-C3N4异质结在PEC性能上有显着增强,包括光电流密度的显着增加。重要的是,这种异质结构也能够在零外部偏压下驱动PEC水分裂,这主要归功于Z-scheme机制实现的高效电荷分离和转移。总之,这项研究为钝化纳米材料表面状态提供了一种新的策略,并强调了g-C3N4在PEC水裂解应用中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced hydrogen evolution kinetics via GaN/g-C3N4 heterojunction engineering

Enhanced hydrogen evolution kinetics via GaN/g-C3N4 heterojunction engineering

Among various semiconductors evaluated for photoelectrochemical (PEC) water splitting, gallium nitride (GaN) has emerged as a promising photoelectrode material due to its wide, direct bandgap, which allows for more efficient sunlight utilization. To address the issue of severe surface states that hinder its performance, graphitic carbon nitride (g-C3N4) was introduced as a passivation layer. The resulting GaN/g-C3N4 heterojunction demonstrates a significant enhancement in PEC performance compared to pristine GaN nanorods (NRs), including a notable increase in photocurrent density. Importantly, this heterostructure is also capable of driving PEC water splitting under zero external bias, which is primarily attributed to the efficient charge separation and transfer enabled by the Z-scheme mechanism. Overall, this study offers a novel strategy for passivating surface states in nanomaterials and underscores the promising role of g-C3N4 in PEC water splitting applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信