基于LIBS的LID-QMS首壁燃料滞留诊断效率评价

IF 2.7 2区 物理与天体物理 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Yiqin Wang , Qingmei Xiao , Yang Liu , Shi Ye , Feng Li , Dongye Zhao
{"title":"基于LIBS的LID-QMS首壁燃料滞留诊断效率评价","authors":"Yiqin Wang ,&nbsp;Qingmei Xiao ,&nbsp;Yang Liu ,&nbsp;Shi Ye ,&nbsp;Feng Li ,&nbsp;Dongye Zhao","doi":"10.1016/j.nme.2025.101986","DOIUrl":null,"url":null,"abstract":"<div><div>Quantifying deuterium (D) retention in plasma-facing components (PFCs) with minimal material impact is critical for fusion reactor operation. This study employs laser-induced desorption coupled with quadrupole mass spectrometry (LID-QMS) for in situ D-retention analysis on HL-3 graphite tiles. As an auxiliary strategy, laser-induced breakdown spectroscopy (LIBS) is implemented under optimized low-fluence conditions to intermittently evaluate LID-QMS desorption efficiency during operation. Laboratory experiments demonstrate &gt; 80 % deuterium release in the first LID pulse (laser fluence &gt; 570 MW/m<sup>2</sup>), validated via cross-calibrated QMS measurements; LIBS provides rapid efficiency assessment by correlating D/H spectral results with QMS-resolved H, HD and D<sub>2</sub> desorption signals. The integrated LID-QMS-LIBS framework permits: real-time optimization of LID parameters during material analysis, direct efficiency validation without destructive sampling. This methodology is currently being implemented on HL-3 tokamak for in situ wall-D monitoring, demonstrating potential to replace ex situ post-mortem analysis in future fusion devices.</div></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"45 ","pages":"Article 101986"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficiency evaluation of fuel retention diagnostic in first wall by LID-QMS: Based on LIBS\",\"authors\":\"Yiqin Wang ,&nbsp;Qingmei Xiao ,&nbsp;Yang Liu ,&nbsp;Shi Ye ,&nbsp;Feng Li ,&nbsp;Dongye Zhao\",\"doi\":\"10.1016/j.nme.2025.101986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Quantifying deuterium (D) retention in plasma-facing components (PFCs) with minimal material impact is critical for fusion reactor operation. This study employs laser-induced desorption coupled with quadrupole mass spectrometry (LID-QMS) for in situ D-retention analysis on HL-3 graphite tiles. As an auxiliary strategy, laser-induced breakdown spectroscopy (LIBS) is implemented under optimized low-fluence conditions to intermittently evaluate LID-QMS desorption efficiency during operation. Laboratory experiments demonstrate &gt; 80 % deuterium release in the first LID pulse (laser fluence &gt; 570 MW/m<sup>2</sup>), validated via cross-calibrated QMS measurements; LIBS provides rapid efficiency assessment by correlating D/H spectral results with QMS-resolved H, HD and D<sub>2</sub> desorption signals. The integrated LID-QMS-LIBS framework permits: real-time optimization of LID parameters during material analysis, direct efficiency validation without destructive sampling. This methodology is currently being implemented on HL-3 tokamak for in situ wall-D monitoring, demonstrating potential to replace ex situ post-mortem analysis in future fusion devices.</div></div>\",\"PeriodicalId\":56004,\"journal\":{\"name\":\"Nuclear Materials and Energy\",\"volume\":\"45 \",\"pages\":\"Article 101986\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Materials and Energy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352179125001280\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352179125001280","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在最小的材料影响下量化等离子体面组件(pfc)中的氘(D)保留对聚变反应堆运行至关重要。本研究采用激光诱导解吸结合四极杆质谱法(LID-QMS)对HL-3石墨瓦进行原位d保留分析。作为辅助策略,在优化的低通量条件下实施激光诱导击穿光谱(LIBS),以间歇评估LID-QMS在运行过程中的解吸效率。实验室实验表明,在第一个LID脉冲(激光通量>; 570mw /m2)中,80%的氘释放,通过交叉校准的QMS测量验证;LIBS通过将D/H光谱结果与qms分辨的H、HD和D2解吸信号相关联,提供快速的效率评估。集成的LID- qms - libs框架允许:在材料分析期间实时优化LID参数,直接效率验证而无需破坏性取样。该方法目前正在HL-3托卡马克上实施,用于原位wall-D监测,显示了在未来的聚变装置中取代非原位死后分析的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficiency evaluation of fuel retention diagnostic in first wall by LID-QMS: Based on LIBS
Quantifying deuterium (D) retention in plasma-facing components (PFCs) with minimal material impact is critical for fusion reactor operation. This study employs laser-induced desorption coupled with quadrupole mass spectrometry (LID-QMS) for in situ D-retention analysis on HL-3 graphite tiles. As an auxiliary strategy, laser-induced breakdown spectroscopy (LIBS) is implemented under optimized low-fluence conditions to intermittently evaluate LID-QMS desorption efficiency during operation. Laboratory experiments demonstrate > 80 % deuterium release in the first LID pulse (laser fluence > 570 MW/m2), validated via cross-calibrated QMS measurements; LIBS provides rapid efficiency assessment by correlating D/H spectral results with QMS-resolved H, HD and D2 desorption signals. The integrated LID-QMS-LIBS framework permits: real-time optimization of LID parameters during material analysis, direct efficiency validation without destructive sampling. This methodology is currently being implemented on HL-3 tokamak for in situ wall-D monitoring, demonstrating potential to replace ex situ post-mortem analysis in future fusion devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Materials and Energy
Nuclear Materials and Energy Materials Science-Materials Science (miscellaneous)
CiteScore
3.70
自引率
15.40%
发文量
175
审稿时长
20 weeks
期刊介绍: The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信