加权公平除法的渐近分析

IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Pasin Manurangsi , Warut Suksompong , Tomohiko Yokoyama
{"title":"加权公平除法的渐近分析","authors":"Pasin Manurangsi ,&nbsp;Warut Suksompong ,&nbsp;Tomohiko Yokoyama","doi":"10.1016/j.tcs.2025.115533","DOIUrl":null,"url":null,"abstract":"<div><div>Several resource allocation settings involve agents with unequal entitlements represented by weights. We analyze weighted fair division from an asymptotic perspective: if <span><math><mi>m</mi></math></span> items are divided among <span><math><mi>n</mi></math></span> agents whose utilities are independently sampled from a probability distribution, when is it likely that a fair allocation exist? We show that if the ratio between the weights is bounded, a weighted envy-free allocation exists with high probability provided that <span><math><mrow><mi>m</mi><mo>=</mo><mstyle><mi>Ω</mi></mstyle><mo>(</mo><mi>n</mi><mi>log</mi><mi>n</mi><mo>/</mo><mi>log</mi><mi>log</mi><mi>n</mi><mo>)</mo></mrow></math></span>, generalizing a prior unweighted result. For weighted proportionality, we establish a sharp threshold of <span><math><mrow><mi>m</mi><mo>=</mo><mi>n</mi><mo>/</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>μ</mi><mo>)</mo></mrow></math></span> for the transition from non-existence to existence, where <span><math><mrow><mi>μ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> denotes the mean of the distribution. In addition, we prove that for two agents, a weighted envy-free (and weighted proportional) allocation is likely to exist if <span><math><mrow><mi>m</mi><mo>=</mo><mi>ω</mi><mo>(</mo><msqrt><mi>r</mi></msqrt><mo>)</mo></mrow></math></span>, where <span><math><mi>r</mi></math></span> denotes the ratio between the two weights.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1054 ","pages":"Article 115533"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic analysis of weighted fair division\",\"authors\":\"Pasin Manurangsi ,&nbsp;Warut Suksompong ,&nbsp;Tomohiko Yokoyama\",\"doi\":\"10.1016/j.tcs.2025.115533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Several resource allocation settings involve agents with unequal entitlements represented by weights. We analyze weighted fair division from an asymptotic perspective: if <span><math><mi>m</mi></math></span> items are divided among <span><math><mi>n</mi></math></span> agents whose utilities are independently sampled from a probability distribution, when is it likely that a fair allocation exist? We show that if the ratio between the weights is bounded, a weighted envy-free allocation exists with high probability provided that <span><math><mrow><mi>m</mi><mo>=</mo><mstyle><mi>Ω</mi></mstyle><mo>(</mo><mi>n</mi><mi>log</mi><mi>n</mi><mo>/</mo><mi>log</mi><mi>log</mi><mi>n</mi><mo>)</mo></mrow></math></span>, generalizing a prior unweighted result. For weighted proportionality, we establish a sharp threshold of <span><math><mrow><mi>m</mi><mo>=</mo><mi>n</mi><mo>/</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>μ</mi><mo>)</mo></mrow></math></span> for the transition from non-existence to existence, where <span><math><mrow><mi>μ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> denotes the mean of the distribution. In addition, we prove that for two agents, a weighted envy-free (and weighted proportional) allocation is likely to exist if <span><math><mrow><mi>m</mi><mo>=</mo><mi>ω</mi><mo>(</mo><msqrt><mi>r</mi></msqrt><mo>)</mo></mrow></math></span>, where <span><math><mi>r</mi></math></span> denotes the ratio between the two weights.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1054 \",\"pages\":\"Article 115533\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397525004712\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525004712","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

一些资源分配设置涉及由权重表示的不平等权利的代理。我们从渐近的角度分析加权公平分配:如果m个项目被分配给n个代理,这些代理的效用从概率分布中独立采样,那么公平分配何时可能存在?我们证明,如果权重之间的比率是有界的,则在m=Ω(nlogn/loglogn)的情况下,有高概率存在加权无嫉妒分配,推广了先前未加权的结果。对于加权比例性,我们建立了一个从不存在到存在过渡的尖锐阈值m=n/(1−μ),其中μ∈(0,1)表示分布的均值。此外,我们证明了对于两个agent,如果m=ω(r),则可能存在加权无嫉妒(加权比例)分配,其中r表示两个权重之间的比率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic analysis of weighted fair division
Several resource allocation settings involve agents with unequal entitlements represented by weights. We analyze weighted fair division from an asymptotic perspective: if m items are divided among n agents whose utilities are independently sampled from a probability distribution, when is it likely that a fair allocation exist? We show that if the ratio between the weights is bounded, a weighted envy-free allocation exists with high probability provided that m=Ω(nlogn/loglogn), generalizing a prior unweighted result. For weighted proportionality, we establish a sharp threshold of m=n/(1μ) for the transition from non-existence to existence, where μ(0,1) denotes the mean of the distribution. In addition, we prove that for two agents, a weighted envy-free (and weighted proportional) allocation is likely to exist if m=ω(r), where r denotes the ratio between the two weights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信