MV2DFusion:利用模态特定对象语义进行多模态3D检测。

IF 18.6
Zitian Wang, Zehao Huang, Yulu Gao, Naiyan Wang, Si Liu
{"title":"MV2DFusion:利用模态特定对象语义进行多模态3D检测。","authors":"Zitian Wang, Zehao Huang, Yulu Gao, Naiyan Wang, Si Liu","doi":"10.1109/TPAMI.2025.3609348","DOIUrl":null,"url":null,"abstract":"<p><p>The rise of autonomous vehicles has significantly increased the demand for robust 3D object detection systems. While cameras and LiDAR sensors each offer unique advantages-cameras provide rich texture information and LiDAR offers precise 3D spatial data-relying on a single modality often leads to performance limitations. This paper introduces MV2DFusion, a multi-modal detection framework that integrates the strengths of both worlds through an advanced query-based fusion mechanism. By introducing an image query generator to align with image-specific attributes and a point cloud query generator, MV2DFusion effectively combines modality-specific object semantics without biasing toward one single modality. Then the sparse fusion process can be accomplished based on the valuable object semantics, ensuring efficient and accurate object detection across various scenarios. Our framework's flexibility allows it to integrate with any image and point cloud-based detectors, showcasing its adaptability and potential for future advancements. Extensive evaluations on the nuScenes and Argoverse2 datasets demonstrate that MV2DFusion achieves state-of-the-art performance, particularly excelling in long-range detection scenarios.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":18.6000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection.\",\"authors\":\"Zitian Wang, Zehao Huang, Yulu Gao, Naiyan Wang, Si Liu\",\"doi\":\"10.1109/TPAMI.2025.3609348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rise of autonomous vehicles has significantly increased the demand for robust 3D object detection systems. While cameras and LiDAR sensors each offer unique advantages-cameras provide rich texture information and LiDAR offers precise 3D spatial data-relying on a single modality often leads to performance limitations. This paper introduces MV2DFusion, a multi-modal detection framework that integrates the strengths of both worlds through an advanced query-based fusion mechanism. By introducing an image query generator to align with image-specific attributes and a point cloud query generator, MV2DFusion effectively combines modality-specific object semantics without biasing toward one single modality. Then the sparse fusion process can be accomplished based on the valuable object semantics, ensuring efficient and accurate object detection across various scenarios. Our framework's flexibility allows it to integrate with any image and point cloud-based detectors, showcasing its adaptability and potential for future advancements. Extensive evaluations on the nuScenes and Argoverse2 datasets demonstrate that MV2DFusion achieves state-of-the-art performance, particularly excelling in long-range detection scenarios.</p>\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPAMI.2025.3609348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2025.3609348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动驾驶汽车的兴起大大增加了对强大的3D物体检测系统的需求。虽然摄像头和激光雷达传感器各自具有独特的优势——摄像头提供丰富的纹理信息,而激光雷达提供精确的3D空间数据——但依赖单一模式往往会导致性能限制。本文介绍了MV2DFusion,这是一个多模态检测框架,通过先进的基于查询的融合机制集成了这两个世界的优势。通过引入图像查询生成器来与图像特定属性和点云查询生成器对齐,MV2DFusion有效地结合了特定于模式的对象语义,而不会偏向于单一模式。然后,基于有价值的目标语义进行稀疏融合处理,确保在各种场景下高效、准确地检测目标。我们的框架的灵活性使其能够与任何基于图像和点云的探测器集成,展示其适应性和未来发展的潜力。对nuScenes和Argoverse2数据集的广泛评估表明,MV2DFusion实现了最先进的性能,特别是在远程检测场景中表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection.

The rise of autonomous vehicles has significantly increased the demand for robust 3D object detection systems. While cameras and LiDAR sensors each offer unique advantages-cameras provide rich texture information and LiDAR offers precise 3D spatial data-relying on a single modality often leads to performance limitations. This paper introduces MV2DFusion, a multi-modal detection framework that integrates the strengths of both worlds through an advanced query-based fusion mechanism. By introducing an image query generator to align with image-specific attributes and a point cloud query generator, MV2DFusion effectively combines modality-specific object semantics without biasing toward one single modality. Then the sparse fusion process can be accomplished based on the valuable object semantics, ensuring efficient and accurate object detection across various scenarios. Our framework's flexibility allows it to integrate with any image and point cloud-based detectors, showcasing its adaptability and potential for future advancements. Extensive evaluations on the nuScenes and Argoverse2 datasets demonstrate that MV2DFusion achieves state-of-the-art performance, particularly excelling in long-range detection scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信