实时原始信号基因组分析使用完全集成的忆阻器硬件。

IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Peiyi He, Shengbo Wang, Ruibin Mao, Mingrui Jiang, Sebastian Siegel, Giacomo Pedretti, Jim Ignowski, John Paul Strachan, Ruibang Luo, Can Li
{"title":"实时原始信号基因组分析使用完全集成的忆阻器硬件。","authors":"Peiyi He, Shengbo Wang, Ruibin Mao, Mingrui Jiang, Sebastian Siegel, Giacomo Pedretti, Jim Ignowski, John Paul Strachan, Ruibang Luo, Can Li","doi":"10.1038/s43588-025-00867-w","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in third-generation sequencing have enabled portable and real-time genomic sequencing, but real-time data processing remains a bottleneck, hampering on-site genomic analysis. These technologies generate noisy analog signals that traditionally require basecalling and read mapping, both demanding costly data movement on von Neumann hardware. Here, to overcome this, we present a memristor-based hardware-software codesign that processes raw sequencer signals directly in analog memory, combining the two separated steps. By exploiting intrinsic device noise for locality-sensitive hashing and implementing parallel approximate searches in content-addressable memory, we experimentally showcase on-site applications, including infectious disease detection and metagenomic classification on a fully integrated memristor chip. Our experimentally validated analysis confirms the effectiveness of this approach on real-world tasks, achieving a 97.15% F1 score in virus raw signal mapping, with 51× speed-up and 477× energy saving over an application-specific integrated circuit. These results demonstrate that in-memory computing hardware provides a viable solution for integration with portable sequencers, enabling real-time and on-site genomic analysis.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":18.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time raw signal genomic analysis using fully integrated memristor hardware.\",\"authors\":\"Peiyi He, Shengbo Wang, Ruibin Mao, Mingrui Jiang, Sebastian Siegel, Giacomo Pedretti, Jim Ignowski, John Paul Strachan, Ruibang Luo, Can Li\",\"doi\":\"10.1038/s43588-025-00867-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advances in third-generation sequencing have enabled portable and real-time genomic sequencing, but real-time data processing remains a bottleneck, hampering on-site genomic analysis. These technologies generate noisy analog signals that traditionally require basecalling and read mapping, both demanding costly data movement on von Neumann hardware. Here, to overcome this, we present a memristor-based hardware-software codesign that processes raw sequencer signals directly in analog memory, combining the two separated steps. By exploiting intrinsic device noise for locality-sensitive hashing and implementing parallel approximate searches in content-addressable memory, we experimentally showcase on-site applications, including infectious disease detection and metagenomic classification on a fully integrated memristor chip. Our experimentally validated analysis confirms the effectiveness of this approach on real-world tasks, achieving a 97.15% F1 score in virus raw signal mapping, with 51× speed-up and 477× energy saving over an application-specific integrated circuit. These results demonstrate that in-memory computing hardware provides a viable solution for integration with portable sequencers, enabling real-time and on-site genomic analysis.</p>\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":18.3000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43588-025-00867-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00867-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

第三代测序技术的进步使便携式和实时基因组测序成为可能,但实时数据处理仍然是一个瓶颈,阻碍了现场基因组分析。这些技术产生嘈杂的模拟信号,传统上需要基调用和读取映射,两者都需要在冯·诺伊曼硬件上进行昂贵的数据移动。在这里,为了克服这个问题,我们提出了一个基于忆阻器的硬件软件协同设计,直接在模拟存储器中处理原始序列器信号,结合两个分离的步骤。通过利用固有设备噪声进行位置敏感散列,并在内容可寻址存储器中实现并行近似搜索,我们实验展示了在完全集成的忆阻芯片上的现场应用,包括传染病检测和宏基因组分类。我们的实验验证分析证实了该方法在实际任务中的有效性,在病毒原始信号映射中获得97.15%的F1分数,在特定应用集成电路上加速51倍,节能477倍。这些结果表明,内存计算硬件为与便携式测序仪集成提供了可行的解决方案,实现了实时和现场基因组分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time raw signal genomic analysis using fully integrated memristor hardware.

Advances in third-generation sequencing have enabled portable and real-time genomic sequencing, but real-time data processing remains a bottleneck, hampering on-site genomic analysis. These technologies generate noisy analog signals that traditionally require basecalling and read mapping, both demanding costly data movement on von Neumann hardware. Here, to overcome this, we present a memristor-based hardware-software codesign that processes raw sequencer signals directly in analog memory, combining the two separated steps. By exploiting intrinsic device noise for locality-sensitive hashing and implementing parallel approximate searches in content-addressable memory, we experimentally showcase on-site applications, including infectious disease detection and metagenomic classification on a fully integrated memristor chip. Our experimentally validated analysis confirms the effectiveness of this approach on real-world tasks, achieving a 97.15% F1 score in virus raw signal mapping, with 51× speed-up and 477× energy saving over an application-specific integrated circuit. These results demonstrate that in-memory computing hardware provides a viable solution for integration with portable sequencers, enabling real-time and on-site genomic analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信