{"title":"cdk1介导的LDHA磷酸化通过ldhb依赖性乳酸氧化促进有丝分裂。","authors":"Mengting Liu, Aoxing Cheng, Weiyi You, Jiaxin Wu, Chenxu Dai, Ting Wang, Ying Wu, Fumei Zhong, Jue Shi, Yingying Du, Zhonghuai Hou, Ping Gao, Ke Ruan, Yi Yang, Yuzheng Zhao, Kaiguang Zhang, Zhenye Yang, Jing Guo","doi":"10.1038/s44319-025-00573-8","DOIUrl":null,"url":null,"abstract":"<p><p>While cancer cells overexpress lactate dehydrogenase A (LDHA) to support glycolytic flux and lactate production, the role of LDHB-which preferentially catalyzes lactate oxidation-remains unclear. Here, we demonstrate that LDHB, but not LDHA, is essential for mitotic progression in cancers. During mitosis, CDK1 phosphorylates LDHA at threonine 18, reducing its incorporation into the lactate dehydrogenase (LDH) tetramer. This results in LDHB-enriched tetramers that shift catalytic activity toward lactate oxidation, converting lactate and NAD⁺ into pyruvate and NADH. The generated NADH fuels oxidative phosphorylation and ATP production, thereby sustaining mitosis. Notably, LDHA-T18 phosphorylation occurs exclusively in tumor tissues. Our findings reveal a tumor-specific mechanism in which CDK1 reprograms LDH isoenzyme composition to direct lactate toward NADH production, ensuring energy homeostasis during mitosis. This underscores the therapeutic necessity of targeting both LDHA and LDHB in cancer.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CDK1-mediated phosphorylation of LDHA fuels mitosis through LDHB-dependent lactate oxidation.\",\"authors\":\"Mengting Liu, Aoxing Cheng, Weiyi You, Jiaxin Wu, Chenxu Dai, Ting Wang, Ying Wu, Fumei Zhong, Jue Shi, Yingying Du, Zhonghuai Hou, Ping Gao, Ke Ruan, Yi Yang, Yuzheng Zhao, Kaiguang Zhang, Zhenye Yang, Jing Guo\",\"doi\":\"10.1038/s44319-025-00573-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While cancer cells overexpress lactate dehydrogenase A (LDHA) to support glycolytic flux and lactate production, the role of LDHB-which preferentially catalyzes lactate oxidation-remains unclear. Here, we demonstrate that LDHB, but not LDHA, is essential for mitotic progression in cancers. During mitosis, CDK1 phosphorylates LDHA at threonine 18, reducing its incorporation into the lactate dehydrogenase (LDH) tetramer. This results in LDHB-enriched tetramers that shift catalytic activity toward lactate oxidation, converting lactate and NAD⁺ into pyruvate and NADH. The generated NADH fuels oxidative phosphorylation and ATP production, thereby sustaining mitosis. Notably, LDHA-T18 phosphorylation occurs exclusively in tumor tissues. Our findings reveal a tumor-specific mechanism in which CDK1 reprograms LDH isoenzyme composition to direct lactate toward NADH production, ensuring energy homeostasis during mitosis. This underscores the therapeutic necessity of targeting both LDHA and LDHB in cancer.</p>\",\"PeriodicalId\":11541,\"journal\":{\"name\":\"EMBO Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44319-025-00573-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00573-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
CDK1-mediated phosphorylation of LDHA fuels mitosis through LDHB-dependent lactate oxidation.
While cancer cells overexpress lactate dehydrogenase A (LDHA) to support glycolytic flux and lactate production, the role of LDHB-which preferentially catalyzes lactate oxidation-remains unclear. Here, we demonstrate that LDHB, but not LDHA, is essential for mitotic progression in cancers. During mitosis, CDK1 phosphorylates LDHA at threonine 18, reducing its incorporation into the lactate dehydrogenase (LDH) tetramer. This results in LDHB-enriched tetramers that shift catalytic activity toward lactate oxidation, converting lactate and NAD⁺ into pyruvate and NADH. The generated NADH fuels oxidative phosphorylation and ATP production, thereby sustaining mitosis. Notably, LDHA-T18 phosphorylation occurs exclusively in tumor tissues. Our findings reveal a tumor-specific mechanism in which CDK1 reprograms LDH isoenzyme composition to direct lactate toward NADH production, ensuring energy homeostasis during mitosis. This underscores the therapeutic necessity of targeting both LDHA and LDHB in cancer.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.