用通信理论研究时间分辨功能连通性:论相位同步和滑动窗口Pearson相关的互补性。

IF 2.5 3区 医学 Q3 NEUROSCIENCES
Brain connectivity Pub Date : 2025-10-01 Epub Date: 2025-09-12 DOI:10.1177/21580014251376733
Sir-Lord Wiafe, Nana O Asante, Vince D Calhoun, Ashkan Faghiri
{"title":"用通信理论研究时间分辨功能连通性:论相位同步和滑动窗口Pearson相关的互补性。","authors":"Sir-Lord Wiafe, Nana O Asante, Vince D Calhoun, Ashkan Faghiri","doi":"10.1177/21580014251376733","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Time-resolved functional network connectivity (trFNC) assesses the time-resolved coupling between brain regions using functional magnetic resonance imaging (fMRI) data. This study aims to compare two techniques used to estimate trFNC, to investigate their similarities and differences when applied to fMRI data. These techniques are the sliding window Pearson correlation (SWPC), an amplitude-based approach, and phase synchrony (PS), a phase-based technique. <b><i>Methods:</i></b> To accomplish our objective, we used resting-state fMRI data from the Human Connectome Project with 827 subjects [repetition time (TR): 0.7 sec] and the Function Biomedical Informatics Research Network with 311 subjects (TR: 2 sec), which included 151 schizophrenia (SZ) patients and 160 controls. <b><i>Results:</i></b> Our simulations reveal distinct strengths in two connectivity methods: SWPC captures high-magnitude, low-frequency connectivity, whereas PS detects low-magnitude, high-frequency connectivity. Stronger correlations between SWPC and PS align with pronounced fMRI oscillations. For fMRI data, higher correlations between SWPC and PS occur with matched frequencies and smaller SWPC window sizes (∼30 sec), but larger windows (∼88 sec) sacrifice clinically relevant information. Both methods identify a SZ-associated brain network state but show different patterns: SWPC highlights low anticorrelations between visual, subcortical, auditory, and sensory-motor networks, whereas PS shows reduced positive synchronization among these networks. <b><i>Conclusion:</i></b> In sum, our findings underscore the complementary nature of SWPC and PS, elucidating their respective strengths and limitations without implying the superiority of one over the other.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"300-318"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studying Time-Resolved Functional Connectivity via Communication Theory: On the Complementary Nature of Phase Synchronization and Sliding Window Pearson Correlation.\",\"authors\":\"Sir-Lord Wiafe, Nana O Asante, Vince D Calhoun, Ashkan Faghiri\",\"doi\":\"10.1177/21580014251376733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background:</i></b> Time-resolved functional network connectivity (trFNC) assesses the time-resolved coupling between brain regions using functional magnetic resonance imaging (fMRI) data. This study aims to compare two techniques used to estimate trFNC, to investigate their similarities and differences when applied to fMRI data. These techniques are the sliding window Pearson correlation (SWPC), an amplitude-based approach, and phase synchrony (PS), a phase-based technique. <b><i>Methods:</i></b> To accomplish our objective, we used resting-state fMRI data from the Human Connectome Project with 827 subjects [repetition time (TR): 0.7 sec] and the Function Biomedical Informatics Research Network with 311 subjects (TR: 2 sec), which included 151 schizophrenia (SZ) patients and 160 controls. <b><i>Results:</i></b> Our simulations reveal distinct strengths in two connectivity methods: SWPC captures high-magnitude, low-frequency connectivity, whereas PS detects low-magnitude, high-frequency connectivity. Stronger correlations between SWPC and PS align with pronounced fMRI oscillations. For fMRI data, higher correlations between SWPC and PS occur with matched frequencies and smaller SWPC window sizes (∼30 sec), but larger windows (∼88 sec) sacrifice clinically relevant information. Both methods identify a SZ-associated brain network state but show different patterns: SWPC highlights low anticorrelations between visual, subcortical, auditory, and sensory-motor networks, whereas PS shows reduced positive synchronization among these networks. <b><i>Conclusion:</i></b> In sum, our findings underscore the complementary nature of SWPC and PS, elucidating their respective strengths and limitations without implying the superiority of one over the other.</p>\",\"PeriodicalId\":9155,\"journal\":{\"name\":\"Brain connectivity\",\"volume\":\" \",\"pages\":\"300-318\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain connectivity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/21580014251376733\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/21580014251376733","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:时间分辨功能网络连接(trFNC)利用功能磁共振成像(fMRI)数据评估脑区域之间的时间分辨耦合。本研究旨在比较两种用于估计trFNC的技术,探讨它们在应用于fMRI数据时的异同。这些技术是滑动窗口皮尔逊相关(SWPC),一种基于幅度的方法,和相位同步(PS),一种基于相位的技术。方法:为了实现我们的目标,我们使用了来自人类连接组项目的827名受试者[重复时间(TR): 0.7秒]和功能生物医学信息学研究网络的311名受试者(TR: 2秒)的静息状态fMRI数据,其中包括151名精神分裂症患者和160名对照组。结果:我们的模拟揭示了两种连接方法的独特优势:SWPC捕获高强度、低频连接,而PS检测低强度、高频连接。SWPC和PS之间更强的相关性与明显的fMRI振荡一致。对于fMRI数据,SWPC和PS之间的高相关性出现在匹配的频率和较小的SWPC窗口大小(~ 30秒),但较大的窗口(~ 88秒)牺牲了临床相关信息。两种方法都确定了与sz相关的大脑网络状态,但显示出不同的模式:SWPC强调视觉、皮层下、听觉和感觉-运动网络之间的低反相关性,而PS显示这些网络之间的正同步性降低。结论:总之,我们的研究结果强调了SWPC和PS的互补性,阐明了它们各自的优势和局限性,而不是暗示一个比另一个优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Studying Time-Resolved Functional Connectivity via Communication Theory: On the Complementary Nature of Phase Synchronization and Sliding Window Pearson Correlation.

Background: Time-resolved functional network connectivity (trFNC) assesses the time-resolved coupling between brain regions using functional magnetic resonance imaging (fMRI) data. This study aims to compare two techniques used to estimate trFNC, to investigate their similarities and differences when applied to fMRI data. These techniques are the sliding window Pearson correlation (SWPC), an amplitude-based approach, and phase synchrony (PS), a phase-based technique. Methods: To accomplish our objective, we used resting-state fMRI data from the Human Connectome Project with 827 subjects [repetition time (TR): 0.7 sec] and the Function Biomedical Informatics Research Network with 311 subjects (TR: 2 sec), which included 151 schizophrenia (SZ) patients and 160 controls. Results: Our simulations reveal distinct strengths in two connectivity methods: SWPC captures high-magnitude, low-frequency connectivity, whereas PS detects low-magnitude, high-frequency connectivity. Stronger correlations between SWPC and PS align with pronounced fMRI oscillations. For fMRI data, higher correlations between SWPC and PS occur with matched frequencies and smaller SWPC window sizes (∼30 sec), but larger windows (∼88 sec) sacrifice clinically relevant information. Both methods identify a SZ-associated brain network state but show different patterns: SWPC highlights low anticorrelations between visual, subcortical, auditory, and sensory-motor networks, whereas PS shows reduced positive synchronization among these networks. Conclusion: In sum, our findings underscore the complementary nature of SWPC and PS, elucidating their respective strengths and limitations without implying the superiority of one over the other.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain connectivity
Brain connectivity Neuroscience-General Neuroscience
CiteScore
4.80
自引率
0.00%
发文量
80
期刊介绍: Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic. This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信