探索具有不同同态比的图中的结构级邻域

IF 10.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Songwei Zhao;Bo Yu;Sinuo Zhang;Zhejian Yang;Jifeng Hu;Philip S. Yu;Hechang Chen
{"title":"探索具有不同同态比的图中的结构级邻域","authors":"Songwei Zhao;Bo Yu;Sinuo Zhang;Zhejian Yang;Jifeng Hu;Philip S. Yu;Hechang Chen","doi":"10.1109/TKDE.2025.3591771","DOIUrl":null,"url":null,"abstract":"Graph neural networks (GNNs) have garnered significant attention for their competitive performance on graph-structured data. However, many existing methods are commonly constrained by the homophily assumption, making them overly reliant on the uniform neighbor propagation, which limits their ability to generalize to heterophilous graphs. Although some approaches extend aggregation to multi-hop neighbors, adapting neighborhood sizes on a per-node basis remains a significant challenge. In view of this, we propose an Evolutionary Graph Neural Network (EGNN) with adaptive structure-level aggregation and label smoothing, offering a novel solution to the aforementioned drawback. The core innovation of EGNN lies in assigning each node a <italic>personalized</i> neighborhood structure utilizing <italic>behavior-level</i> crossover and mutation. Specifically, we first adaptively search for the optimal structure-level neighborhoods for nodes within the solution space, leveraging the exploratory capabilities of evolutionary computation. This approach enhances the exchange of information between the target node and surrounding nodes, achieving a smooth vector representation. Subsequently, we adopt the optimal structure obtained through evolutionary search to perform label smoothing, further boosting the robustness of the framework. We conduct experiments on nine real-world networks with different homophily ratios, where outstanding performance demonstrates that the ability of EGNN can match or surpass SOTA baselines.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 10","pages":"5852-5865"},"PeriodicalIF":10.4000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EGNN: Exploring Structure-Level Neighborhoods in Graphs With Varying Homophily Ratios\",\"authors\":\"Songwei Zhao;Bo Yu;Sinuo Zhang;Zhejian Yang;Jifeng Hu;Philip S. Yu;Hechang Chen\",\"doi\":\"10.1109/TKDE.2025.3591771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph neural networks (GNNs) have garnered significant attention for their competitive performance on graph-structured data. However, many existing methods are commonly constrained by the homophily assumption, making them overly reliant on the uniform neighbor propagation, which limits their ability to generalize to heterophilous graphs. Although some approaches extend aggregation to multi-hop neighbors, adapting neighborhood sizes on a per-node basis remains a significant challenge. In view of this, we propose an Evolutionary Graph Neural Network (EGNN) with adaptive structure-level aggregation and label smoothing, offering a novel solution to the aforementioned drawback. The core innovation of EGNN lies in assigning each node a <italic>personalized</i> neighborhood structure utilizing <italic>behavior-level</i> crossover and mutation. Specifically, we first adaptively search for the optimal structure-level neighborhoods for nodes within the solution space, leveraging the exploratory capabilities of evolutionary computation. This approach enhances the exchange of information between the target node and surrounding nodes, achieving a smooth vector representation. Subsequently, we adopt the optimal structure obtained through evolutionary search to perform label smoothing, further boosting the robustness of the framework. We conduct experiments on nine real-world networks with different homophily ratios, where outstanding performance demonstrates that the ability of EGNN can match or surpass SOTA baselines.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 10\",\"pages\":\"5852-5865\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11091505/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11091505/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

图神经网络(gnn)因其在图结构数据上的优异表现而受到广泛关注。然而,许多现有的方法普遍受到同态假设的约束,使得它们过分依赖于一致邻居传播,这限制了它们推广到异亲图的能力。尽管一些方法将聚合扩展到多跳邻居,但在每个节点的基础上调整邻居的大小仍然是一个重大挑战。鉴于此,我们提出了一种具有自适应结构级聚合和标签平滑的进化图神经网络(EGNN),为上述缺点提供了一种新的解决方案。EGNN的核心创新在于利用行为层面的交叉和突变为每个节点分配个性化的邻域结构。具体来说,我们首先利用进化计算的探索能力,自适应地搜索解空间中节点的最优结构级邻域。这种方法增强了目标节点和周围节点之间的信息交换,实现了平滑的向量表示。随后,我们采用进化搜索得到的最优结构进行标签平滑,进一步增强了框架的鲁棒性。我们在9个具有不同同质比率的真实网络上进行了实验,其中出色的性能表明EGNN的能力可以匹配或超过SOTA基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EGNN: Exploring Structure-Level Neighborhoods in Graphs With Varying Homophily Ratios
Graph neural networks (GNNs) have garnered significant attention for their competitive performance on graph-structured data. However, many existing methods are commonly constrained by the homophily assumption, making them overly reliant on the uniform neighbor propagation, which limits their ability to generalize to heterophilous graphs. Although some approaches extend aggregation to multi-hop neighbors, adapting neighborhood sizes on a per-node basis remains a significant challenge. In view of this, we propose an Evolutionary Graph Neural Network (EGNN) with adaptive structure-level aggregation and label smoothing, offering a novel solution to the aforementioned drawback. The core innovation of EGNN lies in assigning each node a personalized neighborhood structure utilizing behavior-level crossover and mutation. Specifically, we first adaptively search for the optimal structure-level neighborhoods for nodes within the solution space, leveraging the exploratory capabilities of evolutionary computation. This approach enhances the exchange of information between the target node and surrounding nodes, achieving a smooth vector representation. Subsequently, we adopt the optimal structure obtained through evolutionary search to perform label smoothing, further boosting the robustness of the framework. We conduct experiments on nine real-world networks with different homophily ratios, where outstanding performance demonstrates that the ability of EGNN can match or surpass SOTA baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信