{"title":"基于模糊容差关系和模糊互隐含粒度的实例依赖不完全多标签特征选择","authors":"Jianhua Dai;Wenxiang Chen;Yuhua Qian;Witold Pedrycz","doi":"10.1109/TKDE.2025.3591461","DOIUrl":null,"url":null,"abstract":"Multi-label feature selection is an effective approach to mitigate the high-dimensional feature problem in multi-label learning. Most existing multi-label feature selection methods either assume that the data is complete, or that either the features or the labels are incomplete. So far, there are few studies on multi-label data with missing features and labels. In many cases, missing features in instances of multi-label data often lead to missing labels, which is ignored by existing studies. We define this type of data as instance-dependent incomplete multi-label data. In this paper, we propose a feature selection method for instance-dependent incomplete multi-label data. Firstly, we use the positive correlations between features to reconstruct the feature space, thereby recovering missing values and enhancing non-missing values. Secondly, we use fuzzy tolerance relation to guide label recovery, and utilize fuzzy mutual implication granularity to impose structural constraint on the projection matrix. Thirdly, we achieve feature selection by eliminating the impact of incomplete instances and imposing sparse regularization on the projection matrix. Finally, we provide a convergent solution for the proposed feature selection framework. Comparative experiments with existing multi-label feature selection methods show that our method can perform effective feature selection on instance-dependent incomplete multi-label data.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 10","pages":"5994-6008"},"PeriodicalIF":10.4000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instance-Dependent Incomplete Multi-Label Feature Selection by Fuzzy Tolerance Relation and Fuzzy Mutual Implication Granularity\",\"authors\":\"Jianhua Dai;Wenxiang Chen;Yuhua Qian;Witold Pedrycz\",\"doi\":\"10.1109/TKDE.2025.3591461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-label feature selection is an effective approach to mitigate the high-dimensional feature problem in multi-label learning. Most existing multi-label feature selection methods either assume that the data is complete, or that either the features or the labels are incomplete. So far, there are few studies on multi-label data with missing features and labels. In many cases, missing features in instances of multi-label data often lead to missing labels, which is ignored by existing studies. We define this type of data as instance-dependent incomplete multi-label data. In this paper, we propose a feature selection method for instance-dependent incomplete multi-label data. Firstly, we use the positive correlations between features to reconstruct the feature space, thereby recovering missing values and enhancing non-missing values. Secondly, we use fuzzy tolerance relation to guide label recovery, and utilize fuzzy mutual implication granularity to impose structural constraint on the projection matrix. Thirdly, we achieve feature selection by eliminating the impact of incomplete instances and imposing sparse regularization on the projection matrix. Finally, we provide a convergent solution for the proposed feature selection framework. Comparative experiments with existing multi-label feature selection methods show that our method can perform effective feature selection on instance-dependent incomplete multi-label data.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 10\",\"pages\":\"5994-6008\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11098753/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11098753/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Instance-Dependent Incomplete Multi-Label Feature Selection by Fuzzy Tolerance Relation and Fuzzy Mutual Implication Granularity
Multi-label feature selection is an effective approach to mitigate the high-dimensional feature problem in multi-label learning. Most existing multi-label feature selection methods either assume that the data is complete, or that either the features or the labels are incomplete. So far, there are few studies on multi-label data with missing features and labels. In many cases, missing features in instances of multi-label data often lead to missing labels, which is ignored by existing studies. We define this type of data as instance-dependent incomplete multi-label data. In this paper, we propose a feature selection method for instance-dependent incomplete multi-label data. Firstly, we use the positive correlations between features to reconstruct the feature space, thereby recovering missing values and enhancing non-missing values. Secondly, we use fuzzy tolerance relation to guide label recovery, and utilize fuzzy mutual implication granularity to impose structural constraint on the projection matrix. Thirdly, we achieve feature selection by eliminating the impact of incomplete instances and imposing sparse regularization on the projection matrix. Finally, we provide a convergent solution for the proposed feature selection framework. Comparative experiments with existing multi-label feature selection methods show that our method can perform effective feature selection on instance-dependent incomplete multi-label data.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.