商品期权收益可预测性

IF 2.3 4区 经济学 Q2 BUSINESS, FINANCE
Constant Aka, Marie-Hélène Gagnon, Gabriel J. Power
{"title":"商品期权收益可预测性","authors":"Constant Aka,&nbsp;Marie-Hélène Gagnon,&nbsp;Gabriel J. Power","doi":"10.1002/fut.22614","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the predictability of delta-hedged commodity option returns using 103 predictors. We estimate several linear and nonlinear machine learning models and forecast ensembles using futures options data on seven commodities. There is strong evidence of out-of-sample return predictability for horizons of 1 week to 1 month ahead. We show how a machine learning-informed long-short option trading strategy generates positive returns after transaction costs for most commodities. Among the groups of predictors, options-based characteristics are the most informative, but macroeconomic variables typically improve forecasts. A nonlinear ensemble forecast provides the best results, while the best single model is the Random Forest. Some machine learning models perform poorly. Finally, we document strong evidence for increased predictability in periods of high volatility.</p>","PeriodicalId":15863,"journal":{"name":"Journal of Futures Markets","volume":"45 10","pages":"1544-1578"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fut.22614","citationCount":"0","resultStr":"{\"title\":\"Commodity Option Return Predictability\",\"authors\":\"Constant Aka,&nbsp;Marie-Hélène Gagnon,&nbsp;Gabriel J. Power\",\"doi\":\"10.1002/fut.22614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the predictability of delta-hedged commodity option returns using 103 predictors. We estimate several linear and nonlinear machine learning models and forecast ensembles using futures options data on seven commodities. There is strong evidence of out-of-sample return predictability for horizons of 1 week to 1 month ahead. We show how a machine learning-informed long-short option trading strategy generates positive returns after transaction costs for most commodities. Among the groups of predictors, options-based characteristics are the most informative, but macroeconomic variables typically improve forecasts. A nonlinear ensemble forecast provides the best results, while the best single model is the Random Forest. Some machine learning models perform poorly. Finally, we document strong evidence for increased predictability in periods of high volatility.</p>\",\"PeriodicalId\":15863,\"journal\":{\"name\":\"Journal of Futures Markets\",\"volume\":\"45 10\",\"pages\":\"1544-1578\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fut.22614\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Futures Markets\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fut.22614\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Futures Markets","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fut.22614","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本文利用103个预测因子对delta套期保值商品期权收益的可预测性进行了研究。我们估计了几种线性和非线性机器学习模型,并使用七种商品的期货期权数据预测集合。有强有力的证据表明,对未来1周至1个月的视界,样本外回报具有可预测性。我们展示了机器学习通知的多空期权交易策略如何在大多数商品的交易成本后产生正回报。在预测者群体中,基于期权的特征是最具信息量的,但宏观经济变量通常会改善预测。非线性集合预测提供了最好的结果,而最佳的单一模型是随机森林。一些机器学习模型表现不佳。最后,我们记录了在高波动性时期增加可预测性的有力证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Commodity Option Return Predictability

Commodity Option Return Predictability

This paper investigates the predictability of delta-hedged commodity option returns using 103 predictors. We estimate several linear and nonlinear machine learning models and forecast ensembles using futures options data on seven commodities. There is strong evidence of out-of-sample return predictability for horizons of 1 week to 1 month ahead. We show how a machine learning-informed long-short option trading strategy generates positive returns after transaction costs for most commodities. Among the groups of predictors, options-based characteristics are the most informative, but macroeconomic variables typically improve forecasts. A nonlinear ensemble forecast provides the best results, while the best single model is the Random Forest. Some machine learning models perform poorly. Finally, we document strong evidence for increased predictability in periods of high volatility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Futures Markets
Journal of Futures Markets BUSINESS, FINANCE-
CiteScore
3.70
自引率
15.80%
发文量
91
期刊介绍: The Journal of Futures Markets chronicles the latest developments in financial futures and derivatives. It publishes timely, innovative articles written by leading finance academics and professionals. Coverage ranges from the highly practical to theoretical topics that include futures, derivatives, risk management and control, financial engineering, new financial instruments, hedging strategies, analysis of trading systems, legal, accounting, and regulatory issues, and portfolio optimization. This publication contains the very latest research from the top experts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信