Taegyum Kim, Hyeontae Jo, Woohyuk Choi, Bong-Gyu Jang
{"title":"比特币价格方向预测和市场变量","authors":"Taegyum Kim, Hyeontae Jo, Woohyuk Choi, Bong-Gyu Jang","doi":"10.1002/fut.70010","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper aims to improve Bitcoin price direction prediction using a CNN-LSTM model that incorporates various relevant indicators, such as stock market indices, commodity indices, and interest rates. Separate models are trained for predicting price up and down direction and combined to enhance prediction accuracy. We utilize binary classification models to independently analyze the impact of different features, verified through explainable artificial intelligence techniques. Additionally, an investment strategy based on our model is proposed and compared with traditional strategies, specifically focusing on maximum drawdown relative to the S&P500 buy-and-hold strategy. Results suggest that our strategy offers potential for stable investment in Bitcoin, showcasing its value as a financial asset. This study demonstrates the role of deep learning in Bitcoin price direction prediction and investment strategy development and contributes to future research on cryptocurrency forecasting and investment approaches.</p></div>","PeriodicalId":15863,"journal":{"name":"Journal of Futures Markets","volume":"45 10","pages":"1579-1600"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bitcoin Price Direction Forecasting and Market Variables\",\"authors\":\"Taegyum Kim, Hyeontae Jo, Woohyuk Choi, Bong-Gyu Jang\",\"doi\":\"10.1002/fut.70010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This paper aims to improve Bitcoin price direction prediction using a CNN-LSTM model that incorporates various relevant indicators, such as stock market indices, commodity indices, and interest rates. Separate models are trained for predicting price up and down direction and combined to enhance prediction accuracy. We utilize binary classification models to independently analyze the impact of different features, verified through explainable artificial intelligence techniques. Additionally, an investment strategy based on our model is proposed and compared with traditional strategies, specifically focusing on maximum drawdown relative to the S&P500 buy-and-hold strategy. Results suggest that our strategy offers potential for stable investment in Bitcoin, showcasing its value as a financial asset. This study demonstrates the role of deep learning in Bitcoin price direction prediction and investment strategy development and contributes to future research on cryptocurrency forecasting and investment approaches.</p></div>\",\"PeriodicalId\":15863,\"journal\":{\"name\":\"Journal of Futures Markets\",\"volume\":\"45 10\",\"pages\":\"1579-1600\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Futures Markets\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fut.70010\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Futures Markets","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fut.70010","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Bitcoin Price Direction Forecasting and Market Variables
This paper aims to improve Bitcoin price direction prediction using a CNN-LSTM model that incorporates various relevant indicators, such as stock market indices, commodity indices, and interest rates. Separate models are trained for predicting price up and down direction and combined to enhance prediction accuracy. We utilize binary classification models to independently analyze the impact of different features, verified through explainable artificial intelligence techniques. Additionally, an investment strategy based on our model is proposed and compared with traditional strategies, specifically focusing on maximum drawdown relative to the S&P500 buy-and-hold strategy. Results suggest that our strategy offers potential for stable investment in Bitcoin, showcasing its value as a financial asset. This study demonstrates the role of deep learning in Bitcoin price direction prediction and investment strategy development and contributes to future research on cryptocurrency forecasting and investment approaches.
期刊介绍:
The Journal of Futures Markets chronicles the latest developments in financial futures and derivatives. It publishes timely, innovative articles written by leading finance academics and professionals. Coverage ranges from the highly practical to theoretical topics that include futures, derivatives, risk management and control, financial engineering, new financial instruments, hedging strategies, analysis of trading systems, legal, accounting, and regulatory issues, and portfolio optimization. This publication contains the very latest research from the top experts.