基于机器学习的灰体因子解析表达式及其在原始黑洞中的应用

IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Guan-Wen Yuan , Marco Calzà , Davide Pedrotti
{"title":"基于机器学习的灰体因子解析表达式及其在原始黑洞中的应用","authors":"Guan-Wen Yuan ,&nbsp;Marco Calzà ,&nbsp;Davide Pedrotti","doi":"10.1016/j.dark.2025.102078","DOIUrl":null,"url":null,"abstract":"<div><div>Symbolic Regression (SR) is a machine learning approach that explores the space of mathematical expressions to identify those that best fit a given dataset, balancing both accuracy and simplicity. We apply SR to the study of Gray-Body Factors (GBFs), which play a crucial role in the derivation of Hawking radiation and are recognized for their computational complexity. We explore simple analytical forms for the GBFs of the Schwarzschild Black Hole (BH). We compare the results obtained with different approaches and quantify their consistency with those obtained by solving the Teukolsky equation. As a case study, we apply our pipeline, which we call <span>ReGrayssion</span>, to the study of Primordial Black Holes (PBHs) as Dark Matter (DM) candidates, deriving constraints on the abundance from observations of diffuse extragalactic <span><math><mi>γ</mi></math></span>-ray background. These results highlight the possible role of SR in providing human-interpretable, approximate analytical GBF expressions, offering a new pathway for investigating PBH as a DM candidate.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"50 ","pages":"Article 102078"},"PeriodicalIF":6.4000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based analytical expressions for Gray-Body Factors and application to Primordial Black Holes\",\"authors\":\"Guan-Wen Yuan ,&nbsp;Marco Calzà ,&nbsp;Davide Pedrotti\",\"doi\":\"10.1016/j.dark.2025.102078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Symbolic Regression (SR) is a machine learning approach that explores the space of mathematical expressions to identify those that best fit a given dataset, balancing both accuracy and simplicity. We apply SR to the study of Gray-Body Factors (GBFs), which play a crucial role in the derivation of Hawking radiation and are recognized for their computational complexity. We explore simple analytical forms for the GBFs of the Schwarzschild Black Hole (BH). We compare the results obtained with different approaches and quantify their consistency with those obtained by solving the Teukolsky equation. As a case study, we apply our pipeline, which we call <span>ReGrayssion</span>, to the study of Primordial Black Holes (PBHs) as Dark Matter (DM) candidates, deriving constraints on the abundance from observations of diffuse extragalactic <span><math><mi>γ</mi></math></span>-ray background. These results highlight the possible role of SR in providing human-interpretable, approximate analytical GBF expressions, offering a new pathway for investigating PBH as a DM candidate.</div></div>\",\"PeriodicalId\":48774,\"journal\":{\"name\":\"Physics of the Dark Universe\",\"volume\":\"50 \",\"pages\":\"Article 102078\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Dark Universe\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212686425002717\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686425002717","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

符号回归(SR)是一种机器学习方法,它探索数学表达式的空间,以识别最适合给定数据集的表达式,平衡准确性和简单性。我们将SR应用于灰体因子(GBFs)的研究,它在霍金辐射的推导中起着至关重要的作用,并因其计算复杂性而得到认可。我们探索了史瓦西黑洞(BH) gbf的简单解析形式。我们比较了不同方法得到的结果,并量化了它们与通过求解Teukolsky方程得到的结果的一致性。作为一个案例研究,我们将我们的管道,我们称之为ReGrayssion,应用于作为暗物质(DM)候选者的原始黑洞(PBHs)的研究,从漫射星系外γ射线背景的观测中得出丰度的限制。这些结果突出了SR在提供人类可解释的、近似解析的GBF表达方面的可能作用,为研究PBH作为DM候选者提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-based analytical expressions for Gray-Body Factors and application to Primordial Black Holes
Symbolic Regression (SR) is a machine learning approach that explores the space of mathematical expressions to identify those that best fit a given dataset, balancing both accuracy and simplicity. We apply SR to the study of Gray-Body Factors (GBFs), which play a crucial role in the derivation of Hawking radiation and are recognized for their computational complexity. We explore simple analytical forms for the GBFs of the Schwarzschild Black Hole (BH). We compare the results obtained with different approaches and quantify their consistency with those obtained by solving the Teukolsky equation. As a case study, we apply our pipeline, which we call ReGrayssion, to the study of Primordial Black Holes (PBHs) as Dark Matter (DM) candidates, deriving constraints on the abundance from observations of diffuse extragalactic γ-ray background. These results highlight the possible role of SR in providing human-interpretable, approximate analytical GBF expressions, offering a new pathway for investigating PBH as a DM candidate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of the Dark Universe
Physics of the Dark Universe ASTRONOMY & ASTROPHYSICS-
CiteScore
9.60
自引率
7.30%
发文量
118
审稿时长
61 days
期刊介绍: Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact. The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信