{"title":"张量值数据分析中的结构化正则化协方差估计","authors":"Jiangyan Wang, Yang Ren, Jinguan Lin","doi":"10.1016/j.jspi.2025.106337","DOIUrl":null,"url":null,"abstract":"<div><div>Covariance estimation poses a crucial challenge in high-dimensional data analysis, especially when traditional methods (e.g., sample covariance) are inaccurate, particularly with small sample sizes. A promising solution is to exploit inherent data structures such as low-rankness, sparsity, or smoothness. For tensor data (multi-dimensional arrays), structured regularization aids in dimensionality reduction. This paper introduces novel regularization methods for tensor covariance estimation, specifically applying banded and tapering structures to the covariance matrix. We use Kronecker Product Canonical Polyadic (KPCP) decomposition to approximate large matrices via the Kronecker product of smaller matrices. A split resampling scheme is employed to select parameters for the KPCP decomposition from noisy data. This leads to two methods: KPCP-TB-R (Triply Banded-Resampling) and KPCP-TT-R (Triply Tapering-Resampling). Additionally, sparse (thresholding) and multi-structured regularization approaches are introduced for comparison. The effectiveness and robustness of the proposed methods are validated through extensive simulations and applied to monthly export trade volume data.</div></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"242 ","pages":"Article 106337"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structured regularization covariance estimation in tensor-valued data analysis\",\"authors\":\"Jiangyan Wang, Yang Ren, Jinguan Lin\",\"doi\":\"10.1016/j.jspi.2025.106337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Covariance estimation poses a crucial challenge in high-dimensional data analysis, especially when traditional methods (e.g., sample covariance) are inaccurate, particularly with small sample sizes. A promising solution is to exploit inherent data structures such as low-rankness, sparsity, or smoothness. For tensor data (multi-dimensional arrays), structured regularization aids in dimensionality reduction. This paper introduces novel regularization methods for tensor covariance estimation, specifically applying banded and tapering structures to the covariance matrix. We use Kronecker Product Canonical Polyadic (KPCP) decomposition to approximate large matrices via the Kronecker product of smaller matrices. A split resampling scheme is employed to select parameters for the KPCP decomposition from noisy data. This leads to two methods: KPCP-TB-R (Triply Banded-Resampling) and KPCP-TT-R (Triply Tapering-Resampling). Additionally, sparse (thresholding) and multi-structured regularization approaches are introduced for comparison. The effectiveness and robustness of the proposed methods are validated through extensive simulations and applied to monthly export trade volume data.</div></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":\"242 \",\"pages\":\"Article 106337\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375825000758\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375825000758","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Structured regularization covariance estimation in tensor-valued data analysis
Covariance estimation poses a crucial challenge in high-dimensional data analysis, especially when traditional methods (e.g., sample covariance) are inaccurate, particularly with small sample sizes. A promising solution is to exploit inherent data structures such as low-rankness, sparsity, or smoothness. For tensor data (multi-dimensional arrays), structured regularization aids in dimensionality reduction. This paper introduces novel regularization methods for tensor covariance estimation, specifically applying banded and tapering structures to the covariance matrix. We use Kronecker Product Canonical Polyadic (KPCP) decomposition to approximate large matrices via the Kronecker product of smaller matrices. A split resampling scheme is employed to select parameters for the KPCP decomposition from noisy data. This leads to two methods: KPCP-TB-R (Triply Banded-Resampling) and KPCP-TT-R (Triply Tapering-Resampling). Additionally, sparse (thresholding) and multi-structured regularization approaches are introduced for comparison. The effectiveness and robustness of the proposed methods are validated through extensive simulations and applied to monthly export trade volume data.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.