Lin Li, Shiye Wang, Changsheng Li, Ye Yuan, Guoren Wang
{"title":"面向领域增量学习的领域相关低秩自适应","authors":"Lin Li, Shiye Wang, Changsheng Li, Ye Yuan, Guoren Wang","doi":"10.1016/j.hcc.2024.100270","DOIUrl":null,"url":null,"abstract":"<div><div>Continual learning, characterized by the sequential acquisition of multiple tasks, has emerged as a prominent challenge in deep learning. During the process of continual learning, deep neural networks experience a phenomenon known as catastrophic forgetting, wherein networks lose the acquired knowledge related to previous tasks when training on new tasks. Recently, parameter-efficient fine-tuning (PEFT) methods have gained prominence in tackling the challenge of catastrophic forgetting. However, within the realm of domain incremental learning, a type characteristic of continual learning, there exists an additional overlooked inductive bias, which warrants attention beyond existing approaches. In this paper, we propose a novel PEFT method called Domain Correlation Low-Rank Adaptation for domain incremental learning. Our approach put forward a domain correlated loss, which encourages the weights of the LoRA module for adjacent tasks to become more similar, thereby leveraging the correlation between different task domains. Furthermore, we consolidate the classifiers of different task domains to improve prediction performance by capitalizing on the knowledge acquired from diverse tasks. To validate the effectiveness of our method, we conduct comparative experiments and ablation studies on publicly available domain incremental learning benchmark dataset. The experimental results demonstrate that our method outperforms state-of-the-art approaches.</div></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"5 4","pages":"Article 100270"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DC-LoRA: Domain correlation low-rank adaptation for domain incremental learning\",\"authors\":\"Lin Li, Shiye Wang, Changsheng Li, Ye Yuan, Guoren Wang\",\"doi\":\"10.1016/j.hcc.2024.100270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Continual learning, characterized by the sequential acquisition of multiple tasks, has emerged as a prominent challenge in deep learning. During the process of continual learning, deep neural networks experience a phenomenon known as catastrophic forgetting, wherein networks lose the acquired knowledge related to previous tasks when training on new tasks. Recently, parameter-efficient fine-tuning (PEFT) methods have gained prominence in tackling the challenge of catastrophic forgetting. However, within the realm of domain incremental learning, a type characteristic of continual learning, there exists an additional overlooked inductive bias, which warrants attention beyond existing approaches. In this paper, we propose a novel PEFT method called Domain Correlation Low-Rank Adaptation for domain incremental learning. Our approach put forward a domain correlated loss, which encourages the weights of the LoRA module for adjacent tasks to become more similar, thereby leveraging the correlation between different task domains. Furthermore, we consolidate the classifiers of different task domains to improve prediction performance by capitalizing on the knowledge acquired from diverse tasks. To validate the effectiveness of our method, we conduct comparative experiments and ablation studies on publicly available domain incremental learning benchmark dataset. The experimental results demonstrate that our method outperforms state-of-the-art approaches.</div></div>\",\"PeriodicalId\":100605,\"journal\":{\"name\":\"High-Confidence Computing\",\"volume\":\"5 4\",\"pages\":\"Article 100270\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-Confidence Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667295224000734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295224000734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
DC-LoRA: Domain correlation low-rank adaptation for domain incremental learning
Continual learning, characterized by the sequential acquisition of multiple tasks, has emerged as a prominent challenge in deep learning. During the process of continual learning, deep neural networks experience a phenomenon known as catastrophic forgetting, wherein networks lose the acquired knowledge related to previous tasks when training on new tasks. Recently, parameter-efficient fine-tuning (PEFT) methods have gained prominence in tackling the challenge of catastrophic forgetting. However, within the realm of domain incremental learning, a type characteristic of continual learning, there exists an additional overlooked inductive bias, which warrants attention beyond existing approaches. In this paper, we propose a novel PEFT method called Domain Correlation Low-Rank Adaptation for domain incremental learning. Our approach put forward a domain correlated loss, which encourages the weights of the LoRA module for adjacent tasks to become more similar, thereby leveraging the correlation between different task domains. Furthermore, we consolidate the classifiers of different task domains to improve prediction performance by capitalizing on the knowledge acquired from diverse tasks. To validate the effectiveness of our method, we conduct comparative experiments and ablation studies on publicly available domain incremental learning benchmark dataset. The experimental results demonstrate that our method outperforms state-of-the-art approaches.