{"title":"以子句数为参数的基数约束的Max-SAT","authors":"Pallavi Jain , Lawqueen Kanesh , Fahad Panolan , Souvik Saha , Abhishek Sahu , Saket Saurabh , Anannya Upasana","doi":"10.1016/j.tcs.2025.115540","DOIUrl":null,"url":null,"abstract":"<div><div><span>Max-SAT</span> with cardinality constraint (<span>CC-Max-SAT</span>) is one of the classical <span>NP</span>-complete problems. In this problem, given a CNF-formula <span><math><mstyle><mi>Φ</mi></mstyle></math></span> on <span><math><mi>n</mi></math></span> variables, positive integers <span><math><mi>k</mi></math></span> and <span><math><mi>t</mi></math></span>, the goal is to find an assignment <span><math><mi>β</mi></math></span> with at most <span><math><mi>k</mi></math></span> variables set to true (also called a weight <span><math><mi>k</mi></math></span>-assignment) such that the number of clauses satisfied by <span><math><mi>β</mi></math></span> is at least <span><math><mi>t</mi></math></span>. The problem is known to be <span><math><mrow><mi>W</mi><mo>[</mo><mn>2</mn><mo>]</mo></mrow></math></span>-hard with respect to the parameter <span><math><mi>k</mi></math></span>. In this paper, we study the problem with respect to the parameter <span><math><mi>t</mi></math></span>. The special case of <span>CC-Max-SAT</span>, when all the clauses contain only positive literals (known as <span>Maximum Coverage</span>), is known to admit a <span><math><mrow><msup><mn>2</mn><mrow><mi>O</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup><msup><mi>n</mi><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></math></span> algorithm. We present a <span><math><mrow><msup><mn>2</mn><mrow><mi>O</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup><msup><mi>n</mi><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></math></span> algorithm for the general case, <span>CC-Max-SAT</span>. We further study the problem through the lens of kernelization. Since <span>Maximum Coverage</span> does not admit polynomial kernel with respect to the parameter <span><math><mi>t</mi></math></span>, we focus our study on <span><math><msub><mi>K</mi><mrow><mi>d</mi><mo>,</mo><mi>d</mi></mrow></msub></math></span>-free formulas (that is, the clause-variable incidence bipartite graph of the formula that excludes <span><math><msub><mi>K</mi><mrow><mi>d</mi><mo>,</mo><mi>d</mi></mrow></msub></math></span> as a subgraph). Recently, in [Jain et al., SODA 2023], an <span><math><mrow><mi>O</mi><mo>(</mo><mi>d</mi><msup><mi>t</mi><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></math></span> kernel has been designed for the <span>Maximum Coverage</span> problem on <span><math><msub><mi>K</mi><mrow><mi>d</mi><mo>,</mo><mi>d</mi></mrow></msub></math></span>-free incidence graphs. We extend this result to <span>CC-Max-SAT</span> on <span><math><msub><mi>K</mi><mrow><mi>d</mi><mo>,</mo><mi>d</mi></mrow></msub></math></span>-free formulas and design an <span><math><mrow><mi>O</mi><mo>(</mo><mi>d</mi><msup><mn>4</mn><msup><mi>d</mi><mn>2</mn></msup></msup><msup><mi>t</mi><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></math></span> kernel.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1056 ","pages":"Article 115540"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Max-SAT with cardinality constraint parameterized by the number of clauses\",\"authors\":\"Pallavi Jain , Lawqueen Kanesh , Fahad Panolan , Souvik Saha , Abhishek Sahu , Saket Saurabh , Anannya Upasana\",\"doi\":\"10.1016/j.tcs.2025.115540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span>Max-SAT</span> with cardinality constraint (<span>CC-Max-SAT</span>) is one of the classical <span>NP</span>-complete problems. In this problem, given a CNF-formula <span><math><mstyle><mi>Φ</mi></mstyle></math></span> on <span><math><mi>n</mi></math></span> variables, positive integers <span><math><mi>k</mi></math></span> and <span><math><mi>t</mi></math></span>, the goal is to find an assignment <span><math><mi>β</mi></math></span> with at most <span><math><mi>k</mi></math></span> variables set to true (also called a weight <span><math><mi>k</mi></math></span>-assignment) such that the number of clauses satisfied by <span><math><mi>β</mi></math></span> is at least <span><math><mi>t</mi></math></span>. The problem is known to be <span><math><mrow><mi>W</mi><mo>[</mo><mn>2</mn><mo>]</mo></mrow></math></span>-hard with respect to the parameter <span><math><mi>k</mi></math></span>. In this paper, we study the problem with respect to the parameter <span><math><mi>t</mi></math></span>. The special case of <span>CC-Max-SAT</span>, when all the clauses contain only positive literals (known as <span>Maximum Coverage</span>), is known to admit a <span><math><mrow><msup><mn>2</mn><mrow><mi>O</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup><msup><mi>n</mi><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></math></span> algorithm. We present a <span><math><mrow><msup><mn>2</mn><mrow><mi>O</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup><msup><mi>n</mi><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></math></span> algorithm for the general case, <span>CC-Max-SAT</span>. We further study the problem through the lens of kernelization. Since <span>Maximum Coverage</span> does not admit polynomial kernel with respect to the parameter <span><math><mi>t</mi></math></span>, we focus our study on <span><math><msub><mi>K</mi><mrow><mi>d</mi><mo>,</mo><mi>d</mi></mrow></msub></math></span>-free formulas (that is, the clause-variable incidence bipartite graph of the formula that excludes <span><math><msub><mi>K</mi><mrow><mi>d</mi><mo>,</mo><mi>d</mi></mrow></msub></math></span> as a subgraph). Recently, in [Jain et al., SODA 2023], an <span><math><mrow><mi>O</mi><mo>(</mo><mi>d</mi><msup><mi>t</mi><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></math></span> kernel has been designed for the <span>Maximum Coverage</span> problem on <span><math><msub><mi>K</mi><mrow><mi>d</mi><mo>,</mo><mi>d</mi></mrow></msub></math></span>-free incidence graphs. We extend this result to <span>CC-Max-SAT</span> on <span><math><msub><mi>K</mi><mrow><mi>d</mi><mo>,</mo><mi>d</mi></mrow></msub></math></span>-free formulas and design an <span><math><mrow><mi>O</mi><mo>(</mo><mi>d</mi><msup><mn>4</mn><msup><mi>d</mi><mn>2</mn></msup></msup><msup><mi>t</mi><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></math></span> kernel.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1056 \",\"pages\":\"Article 115540\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397525004785\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525004785","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
带基数约束的Max-SAT (CC-Max-SAT)是经典的np完全问题之一。在这个问题中,给定一个cnf公式Φ,在n个变量,正整数k和t上,目标是找到一个赋值β,其中最少有k个变量被设为真(也称为权值k赋值),使得β满足的子句数至少为t。这个问题已知是关于参数k的W[2]-hard。在本文中,我们研究了关于参数t的问题。当所有子句只包含正文本(称为Maximum Coverage)时,已知允许2O(t)nO(1)算法。对于一般情况,我们提出了一种2O(t)nO(1)算法CC-Max-SAT。我们通过核化的视角进一步研究这个问题。由于Maximum Coverage对于参数t不允许多项式核,我们将研究重点放在Kd,d-free公式上(即公式中不包含Kd,d作为子图的子图的子句变量关联二部图)。最近,在[Jain et al., SODA 2023]中,为Kd,d-free关联图上的Maximum Coverage问题设计了一个O(dtd+1)核。我们将此结果推广到CC-Max-SAT上的Kd,d-free公式,并设计了O(d4d2td+1)核。
Max-SAT with cardinality constraint parameterized by the number of clauses
Max-SAT with cardinality constraint (CC-Max-SAT) is one of the classical NP-complete problems. In this problem, given a CNF-formula on variables, positive integers and , the goal is to find an assignment with at most variables set to true (also called a weight -assignment) such that the number of clauses satisfied by is at least . The problem is known to be -hard with respect to the parameter . In this paper, we study the problem with respect to the parameter . The special case of CC-Max-SAT, when all the clauses contain only positive literals (known as Maximum Coverage), is known to admit a algorithm. We present a algorithm for the general case, CC-Max-SAT. We further study the problem through the lens of kernelization. Since Maximum Coverage does not admit polynomial kernel with respect to the parameter , we focus our study on -free formulas (that is, the clause-variable incidence bipartite graph of the formula that excludes as a subgraph). Recently, in [Jain et al., SODA 2023], an kernel has been designed for the Maximum Coverage problem on -free incidence graphs. We extend this result to CC-Max-SAT on -free formulas and design an kernel.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.