基于激光雷达的森林空洞空间可视化和量化框架:森林生态系统的内在组成部分

IF 8.6 Q1 REMOTE SENSING
Guoran Huang , Wangfei Zhang , Haitao Yang , Yuling Chen , Hongcan Guan , Changfeng Lu , Jianhui Zhao , Zhiyong Qi , Tianyu Xiang , Shun Li , Shiyu Yan , Guangcai Xu , Qinghua Guo
{"title":"基于激光雷达的森林空洞空间可视化和量化框架:森林生态系统的内在组成部分","authors":"Guoran Huang ,&nbsp;Wangfei Zhang ,&nbsp;Haitao Yang ,&nbsp;Yuling Chen ,&nbsp;Hongcan Guan ,&nbsp;Changfeng Lu ,&nbsp;Jianhui Zhao ,&nbsp;Zhiyong Qi ,&nbsp;Tianyu Xiang ,&nbsp;Shun Li ,&nbsp;Shiyu Yan ,&nbsp;Guangcai Xu ,&nbsp;Qinghua Guo","doi":"10.1016/j.jag.2025.104845","DOIUrl":null,"url":null,"abstract":"<div><div>Forest voids—three-dimensional (3D), unoccupied spaces within forest ecosystems—form a critical yet under-described component of stand structure. Shaped by vegetation, microclimate, and disturbance regimes, these voids govern light penetration, airflow, and habitat connectivity. We propose a LiDAR-based framework that identifies, visualizes, and quantifies forest voids directly from terrestrial and mobile laser-scanning (TLS/MLS) point clouds. By treating voids as the 3D regions between the digital elevation model (DEM) or digital surface model (DSM) where no returns are detected, our method bypasses canopy-centric metrics and simplified radiative assumptions, yielding a scalable, assumption-light representation of forest architecture. Across sites, void configurations reflect underlying stand architecture. Forests with high structural heterogeneity—multi-layered canopies and irregular stem distributions—exhibit diffuse, vertically extensive voids. In contrast, structurally uniform stands contain more confined voids, largely restricted to lower strata because of diminished understory development. These patterns demonstrate that forest voids integrate overstory and understory attributes, providing a structural lens on spatial openness under diverse conditions. Although challenges in scalability and independent validation remain, extending this framework to multi-platform LiDAR will enable broader applications in biodiversity monitoring, habitat suitability, and climate-adaptation research. By formalizing forest-void quantification, our study advances structural complexity assessment and offers fresh insights into ecosystem dynamics and function.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"143 ","pages":"Article 104845"},"PeriodicalIF":8.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A LiDAR-based framework for visualizing and quantifying forest void space: an intrinsic component of forest ecosystems\",\"authors\":\"Guoran Huang ,&nbsp;Wangfei Zhang ,&nbsp;Haitao Yang ,&nbsp;Yuling Chen ,&nbsp;Hongcan Guan ,&nbsp;Changfeng Lu ,&nbsp;Jianhui Zhao ,&nbsp;Zhiyong Qi ,&nbsp;Tianyu Xiang ,&nbsp;Shun Li ,&nbsp;Shiyu Yan ,&nbsp;Guangcai Xu ,&nbsp;Qinghua Guo\",\"doi\":\"10.1016/j.jag.2025.104845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Forest voids—three-dimensional (3D), unoccupied spaces within forest ecosystems—form a critical yet under-described component of stand structure. Shaped by vegetation, microclimate, and disturbance regimes, these voids govern light penetration, airflow, and habitat connectivity. We propose a LiDAR-based framework that identifies, visualizes, and quantifies forest voids directly from terrestrial and mobile laser-scanning (TLS/MLS) point clouds. By treating voids as the 3D regions between the digital elevation model (DEM) or digital surface model (DSM) where no returns are detected, our method bypasses canopy-centric metrics and simplified radiative assumptions, yielding a scalable, assumption-light representation of forest architecture. Across sites, void configurations reflect underlying stand architecture. Forests with high structural heterogeneity—multi-layered canopies and irregular stem distributions—exhibit diffuse, vertically extensive voids. In contrast, structurally uniform stands contain more confined voids, largely restricted to lower strata because of diminished understory development. These patterns demonstrate that forest voids integrate overstory and understory attributes, providing a structural lens on spatial openness under diverse conditions. Although challenges in scalability and independent validation remain, extending this framework to multi-platform LiDAR will enable broader applications in biodiversity monitoring, habitat suitability, and climate-adaptation research. By formalizing forest-void quantification, our study advances structural complexity assessment and offers fresh insights into ecosystem dynamics and function.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"143 \",\"pages\":\"Article 104845\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843225004923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225004923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

森林空洞是森林生态系统中三维(3D)未被利用的空间,是林分结构中一个重要但未被充分描述的组成部分。这些空隙由植被、小气候和扰动形成,控制着光线的穿透、气流和栖息地的连通性。我们提出了一个基于激光雷达的框架,可以直接从地面和移动激光扫描(TLS/MLS)点云中识别、可视化和量化森林空洞。通过将空洞视为数字高程模型(DEM)或数字表面模型(DSM)之间的3D区域,我们的方法绕过了以冠层为中心的度量和简化的辐射假设,产生了可扩展的、假设轻的森林建筑表示。在各个站点上,空洞的配置反映了潜在的展台结构。结构异质性高的森林——多层树冠和不规则的树干分布——表现出弥散的、垂直扩展的空隙。相比之下,结构均匀的林分含有更多的封闭空隙,由于林下植被发育减少,这些空隙主要局限于较低的地层。这些格局表明,森林空隙综合了林下和林下的属性,为不同条件下的空间开放性提供了一个结构透镜。尽管在可扩展性和独立验证方面仍然存在挑战,但将该框架扩展到多平台激光雷达将使生物多样性监测、栖息地适宜性和气候适应研究得到更广泛的应用。通过形式化森林空洞量化,我们的研究推进了结构复杂性评估,并为生态系统动力学和功能提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A LiDAR-based framework for visualizing and quantifying forest void space: an intrinsic component of forest ecosystems
Forest voids—three-dimensional (3D), unoccupied spaces within forest ecosystems—form a critical yet under-described component of stand structure. Shaped by vegetation, microclimate, and disturbance regimes, these voids govern light penetration, airflow, and habitat connectivity. We propose a LiDAR-based framework that identifies, visualizes, and quantifies forest voids directly from terrestrial and mobile laser-scanning (TLS/MLS) point clouds. By treating voids as the 3D regions between the digital elevation model (DEM) or digital surface model (DSM) where no returns are detected, our method bypasses canopy-centric metrics and simplified radiative assumptions, yielding a scalable, assumption-light representation of forest architecture. Across sites, void configurations reflect underlying stand architecture. Forests with high structural heterogeneity—multi-layered canopies and irregular stem distributions—exhibit diffuse, vertically extensive voids. In contrast, structurally uniform stands contain more confined voids, largely restricted to lower strata because of diminished understory development. These patterns demonstrate that forest voids integrate overstory and understory attributes, providing a structural lens on spatial openness under diverse conditions. Although challenges in scalability and independent validation remain, extending this framework to multi-platform LiDAR will enable broader applications in biodiversity monitoring, habitat suitability, and climate-adaptation research. By formalizing forest-void quantification, our study advances structural complexity assessment and offers fresh insights into ecosystem dynamics and function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信