{"title":"两个平方和和tau函数:拉马努金轨迹","authors":"Bruce C. Berndt , Pieter Moree","doi":"10.1016/j.exmath.2025.125721","DOIUrl":null,"url":null,"abstract":"<div><div>Ramanujan, in his famous first letter to Hardy, claimed a very precise estimate for the number of integers that can be written as a sum of two squares. Far less well-known is that he also made further claims of a similar nature for the non-divisibility of the Ramanujan tau-function for certain primes. In this survey, we provide more historical details and also discuss related later developments. These show that, as so often, Ramanujan was an explorer in a fascinating wilderness, leaving behind him a beckoning trail.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"43 6","pages":"Article 125721"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sums of two squares and the tau-function: Ramanujan’s trail\",\"authors\":\"Bruce C. Berndt , Pieter Moree\",\"doi\":\"10.1016/j.exmath.2025.125721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ramanujan, in his famous first letter to Hardy, claimed a very precise estimate for the number of integers that can be written as a sum of two squares. Far less well-known is that he also made further claims of a similar nature for the non-divisibility of the Ramanujan tau-function for certain primes. In this survey, we provide more historical details and also discuss related later developments. These show that, as so often, Ramanujan was an explorer in a fascinating wilderness, leaving behind him a beckoning trail.</div></div>\",\"PeriodicalId\":50458,\"journal\":{\"name\":\"Expositiones Mathematicae\",\"volume\":\"43 6\",\"pages\":\"Article 125721\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expositiones Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0723086925000763\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086925000763","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Sums of two squares and the tau-function: Ramanujan’s trail
Ramanujan, in his famous first letter to Hardy, claimed a very precise estimate for the number of integers that can be written as a sum of two squares. Far less well-known is that he also made further claims of a similar nature for the non-divisibility of the Ramanujan tau-function for certain primes. In this survey, we provide more historical details and also discuss related later developments. These show that, as so often, Ramanujan was an explorer in a fascinating wilderness, leaving behind him a beckoning trail.
期刊介绍:
Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.