基于检索增强生成的大型语言模型医学知识理解与推理优化方法

IF 4.5 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2025-09-08 DOI:10.1016/j.array.2025.100504
Yingshuai Wang , Yanli Wan , Xingyun Lei , Qingkun Chen , Hongpu Hu
{"title":"基于检索增强生成的大型语言模型医学知识理解与推理优化方法","authors":"Yingshuai Wang ,&nbsp;Yanli Wan ,&nbsp;Xingyun Lei ,&nbsp;Qingkun Chen ,&nbsp;Hongpu Hu","doi":"10.1016/j.array.2025.100504","DOIUrl":null,"url":null,"abstract":"<div><div>Based on the existing Retrieval Augmented Generation (RAG) technology, this study proposes innovative solution to better address the hallucination issues of current large language models. By optimizing data processing, prompt engineering, and multi-retriever fusion, it resolves issues such as semantic capture bias, inaccurate context retrieval, information redundancy, hallucination generation, and length limitations. Data processing focuses on text cleaning, disambiguation, and removing redundant information to enhance consistency. Prompt engineering aids the model in better understanding the task. The adaptive weight fusion of sparse and dense retrievers improves context retrieval accuracy. Experiments conducted on the CCKS-TCMBench dataset for medical knowledge understanding and semantic reasoning show that the optimized model significantly outperforms the baseline across all evaluation metrics.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"28 ","pages":"Article 100504"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A retrieval augmented generation based optimization approach for medical knowledge understanding and reasoning in large language models\",\"authors\":\"Yingshuai Wang ,&nbsp;Yanli Wan ,&nbsp;Xingyun Lei ,&nbsp;Qingkun Chen ,&nbsp;Hongpu Hu\",\"doi\":\"10.1016/j.array.2025.100504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on the existing Retrieval Augmented Generation (RAG) technology, this study proposes innovative solution to better address the hallucination issues of current large language models. By optimizing data processing, prompt engineering, and multi-retriever fusion, it resolves issues such as semantic capture bias, inaccurate context retrieval, information redundancy, hallucination generation, and length limitations. Data processing focuses on text cleaning, disambiguation, and removing redundant information to enhance consistency. Prompt engineering aids the model in better understanding the task. The adaptive weight fusion of sparse and dense retrievers improves context retrieval accuracy. Experiments conducted on the CCKS-TCMBench dataset for medical knowledge understanding and semantic reasoning show that the optimized model significantly outperforms the baseline across all evaluation metrics.</div></div>\",\"PeriodicalId\":8417,\"journal\":{\"name\":\"Array\",\"volume\":\"28 \",\"pages\":\"Article 100504\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Array\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590005625001316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005625001316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

基于现有的检索增强生成(RAG)技术,本研究提出了创新的解决方案,以更好地解决当前大型语言模型的幻觉问题。通过优化数据处理、快速工程和多检索器融合,它解决了语义捕获偏差、上下文检索不准确、信息冗余、幻觉产生和长度限制等问题。数据处理侧重于文本清理、消歧义和去除冗余信息以增强一致性。提示工程帮助模型更好地理解任务。稀疏和密集检索器的自适应权融合提高了上下文检索的准确性。在CCKS-TCMBench医学知识理解和语义推理数据集上进行的实验表明,优化后的模型在所有评估指标上都明显优于基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A retrieval augmented generation based optimization approach for medical knowledge understanding and reasoning in large language models
Based on the existing Retrieval Augmented Generation (RAG) technology, this study proposes innovative solution to better address the hallucination issues of current large language models. By optimizing data processing, prompt engineering, and multi-retriever fusion, it resolves issues such as semantic capture bias, inaccurate context retrieval, information redundancy, hallucination generation, and length limitations. Data processing focuses on text cleaning, disambiguation, and removing redundant information to enhance consistency. Prompt engineering aids the model in better understanding the task. The adaptive weight fusion of sparse and dense retrievers improves context retrieval accuracy. Experiments conducted on the CCKS-TCMBench dataset for medical knowledge understanding and semantic reasoning show that the optimized model significantly outperforms the baseline across all evaluation metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信