OcclusionNetPlusPlus:基于自适应遮挡检测的多尺度相似性网络,用于鲁棒虹膜识别

Rahul Tanna , Tanish Patel , Faisal Mohammed Alotaibi , Rutvij H. Jhaveri , Thippa Reddy Gadekallu
{"title":"OcclusionNetPlusPlus:基于自适应遮挡检测的多尺度相似性网络,用于鲁棒虹膜识别","authors":"Rahul Tanna ,&nbsp;Tanish Patel ,&nbsp;Faisal Mohammed Alotaibi ,&nbsp;Rutvij H. Jhaveri ,&nbsp;Thippa Reddy Gadekallu","doi":"10.1016/j.ijcce.2025.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>A significant challenge in iris recognition systems is the presence of occlusions affecting the iris, face, and periocular regions. To address this issue, this study proposes an OcclusionNetPlusPlus framework which employs carefully designed bank of Gabor filters to capture iris texture patterns at different scales and orientations. We then inject 2D positional encodings into these filter responses to embed explicit (x,y) location information, enabling downstream modules to reason about where each feature came from. The innovation in our approach is the introduction of an occlusion detection mechanism that generates probability maps based on local variance analysis, effectively identifying occluded regions in the iris image. These probability maps are used to dynamically weight the extracted features, reducing the influence of unreliable regions during similarity computation. The framework incorporates a custom loss function that optimizes feature similarity while maintaining discriminative power across different iris patterns. Training and evaluation were conducted on publicly available iris recognition datasets, ensuring a diverse test bed for assessing performance across different occlusion scenarios. We evaluated OcclusionNetPlusPlus on CASIA-Iris-Thousand and IIT Delhi V1.0. In controlled tests, it achieves an EER of 0.51 %, an FRR of 0.54 % at FAR = 1 % (0.61 % at FAR = 0.1 %), and a d-prime of 7.04. Even under simulated unconstrained conditions—adding noise, blur, and random occlusions—EER stays around 2 %.</div></div>","PeriodicalId":100694,"journal":{"name":"International Journal of Cognitive Computing in Engineering","volume":"7 ","pages":"Pages 74-85"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OcclusionNetPlusPlus: a multi-scale similarity network with adaptive occlusion detection for robust iris recognition\",\"authors\":\"Rahul Tanna ,&nbsp;Tanish Patel ,&nbsp;Faisal Mohammed Alotaibi ,&nbsp;Rutvij H. Jhaveri ,&nbsp;Thippa Reddy Gadekallu\",\"doi\":\"10.1016/j.ijcce.2025.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A significant challenge in iris recognition systems is the presence of occlusions affecting the iris, face, and periocular regions. To address this issue, this study proposes an OcclusionNetPlusPlus framework which employs carefully designed bank of Gabor filters to capture iris texture patterns at different scales and orientations. We then inject 2D positional encodings into these filter responses to embed explicit (x,y) location information, enabling downstream modules to reason about where each feature came from. The innovation in our approach is the introduction of an occlusion detection mechanism that generates probability maps based on local variance analysis, effectively identifying occluded regions in the iris image. These probability maps are used to dynamically weight the extracted features, reducing the influence of unreliable regions during similarity computation. The framework incorporates a custom loss function that optimizes feature similarity while maintaining discriminative power across different iris patterns. Training and evaluation were conducted on publicly available iris recognition datasets, ensuring a diverse test bed for assessing performance across different occlusion scenarios. We evaluated OcclusionNetPlusPlus on CASIA-Iris-Thousand and IIT Delhi V1.0. In controlled tests, it achieves an EER of 0.51 %, an FRR of 0.54 % at FAR = 1 % (0.61 % at FAR = 0.1 %), and a d-prime of 7.04. Even under simulated unconstrained conditions—adding noise, blur, and random occlusions—EER stays around 2 %.</div></div>\",\"PeriodicalId\":100694,\"journal\":{\"name\":\"International Journal of Cognitive Computing in Engineering\",\"volume\":\"7 \",\"pages\":\"Pages 74-85\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cognitive Computing in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666307425000373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Computing in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666307425000373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虹膜识别系统面临的一个重大挑战是存在影响虹膜、面部和眼周区域的闭塞。为了解决这个问题,本研究提出了一个OcclusionNetPlusPlus框架,该框架采用精心设计的Gabor滤波器来捕获不同尺度和方向的虹膜纹理模式。然后,我们将2D位置编码注入到这些过滤器响应中,以嵌入明确的(x,y)位置信息,使下游模块能够推断每个特征来自何处。该方法的创新之处在于引入了一种遮挡检测机制,该机制基于局部方差分析生成概率图,有效识别虹膜图像中的遮挡区域。这些概率图用于动态加权提取的特征,减少不可靠区域在相似度计算中的影响。该框架结合了一个自定义损失函数,该函数优化了特征相似性,同时保持了不同虹膜模式的判别能力。训练和评估是在公开可用的虹膜识别数据集上进行的,确保了在不同遮挡场景下评估性能的多样化测试平台。我们在CASIA-Iris-Thousand和IIT Delhi V1.0上对OcclusionNetPlusPlus进行了评估。在对照试验中,其EER为0.51%,FAR = 1%时的FRR为0.54% (FAR = 0.1%时为0.61%),d-撇为7.04。即使在模拟的无约束条件下——加上噪声、模糊和随机闭塞——eer也保持在2%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OcclusionNetPlusPlus: a multi-scale similarity network with adaptive occlusion detection for robust iris recognition
A significant challenge in iris recognition systems is the presence of occlusions affecting the iris, face, and periocular regions. To address this issue, this study proposes an OcclusionNetPlusPlus framework which employs carefully designed bank of Gabor filters to capture iris texture patterns at different scales and orientations. We then inject 2D positional encodings into these filter responses to embed explicit (x,y) location information, enabling downstream modules to reason about where each feature came from. The innovation in our approach is the introduction of an occlusion detection mechanism that generates probability maps based on local variance analysis, effectively identifying occluded regions in the iris image. These probability maps are used to dynamically weight the extracted features, reducing the influence of unreliable regions during similarity computation. The framework incorporates a custom loss function that optimizes feature similarity while maintaining discriminative power across different iris patterns. Training and evaluation were conducted on publicly available iris recognition datasets, ensuring a diverse test bed for assessing performance across different occlusion scenarios. We evaluated OcclusionNetPlusPlus on CASIA-Iris-Thousand and IIT Delhi V1.0. In controlled tests, it achieves an EER of 0.51 %, an FRR of 0.54 % at FAR = 1 % (0.61 % at FAR = 0.1 %), and a d-prime of 7.04. Even under simulated unconstrained conditions—adding noise, blur, and random occlusions—EER stays around 2 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信