{"title":"时间几何基本定理的最佳版本","authors":"Michiya Mori , Peter Šemrl","doi":"10.1016/j.aim.2025.110528","DOIUrl":null,"url":null,"abstract":"<div><div>We study lightlikeness preserving mappings from the 4-dimensional Minkowski spacetime <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> to itself under no additional regularity assumptions like continuity, surjectivity, or injectivity. We prove that such a mapping <em>ϕ</em> satisfies one of the following three conditions.<ul><li><span>(1)</span><span><div>The mapping <em>ϕ</em> can be written as a composition of a Lorentz transformation, a multiplication by a positive scalar, and a translation.</div></span></li><li><span>(2)</span><span><div>There is an event <span><math><mi>r</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> such that <span><math><mi>ϕ</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>∖</mo><mo>{</mo><mi>r</mi><mo>}</mo><mo>)</mo></math></span> is contained in one light cone.</div></span></li><li><span>(3)</span><span><div>There is a lightlike line <em>ℓ</em> such that <span><math><mi>ϕ</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>∖</mo><mi>ℓ</mi><mo>)</mo></math></span> is contained in another lightlike line.</div></span></li></ul> Here, a line that is contained in some light cone in <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> is called a lightlike line. We also give several similar results on mappings defined on a certain subset of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> or the compactification of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110528"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal version of the fundamental theorem of chronogeometry\",\"authors\":\"Michiya Mori , Peter Šemrl\",\"doi\":\"10.1016/j.aim.2025.110528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study lightlikeness preserving mappings from the 4-dimensional Minkowski spacetime <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> to itself under no additional regularity assumptions like continuity, surjectivity, or injectivity. We prove that such a mapping <em>ϕ</em> satisfies one of the following three conditions.<ul><li><span>(1)</span><span><div>The mapping <em>ϕ</em> can be written as a composition of a Lorentz transformation, a multiplication by a positive scalar, and a translation.</div></span></li><li><span>(2)</span><span><div>There is an event <span><math><mi>r</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> such that <span><math><mi>ϕ</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>∖</mo><mo>{</mo><mi>r</mi><mo>}</mo><mo>)</mo></math></span> is contained in one light cone.</div></span></li><li><span>(3)</span><span><div>There is a lightlike line <em>ℓ</em> such that <span><math><mi>ϕ</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>∖</mo><mi>ℓ</mi><mo>)</mo></math></span> is contained in another lightlike line.</div></span></li></ul> Here, a line that is contained in some light cone in <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> is called a lightlike line. We also give several similar results on mappings defined on a certain subset of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> or the compactification of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"480 \",\"pages\":\"Article 110528\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825004268\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004268","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Optimal version of the fundamental theorem of chronogeometry
We study lightlikeness preserving mappings from the 4-dimensional Minkowski spacetime to itself under no additional regularity assumptions like continuity, surjectivity, or injectivity. We prove that such a mapping ϕ satisfies one of the following three conditions.
(1)
The mapping ϕ can be written as a composition of a Lorentz transformation, a multiplication by a positive scalar, and a translation.
(2)
There is an event such that is contained in one light cone.
(3)
There is a lightlike line ℓ such that is contained in another lightlike line.
Here, a line that is contained in some light cone in is called a lightlike line. We also give several similar results on mappings defined on a certain subset of or the compactification of .
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.