{"title":"平面紧集与有理Julia集的一个模型","authors":"Jun Luo , Yi Yang , Xiaoting Yao","doi":"10.1016/j.aim.2025.110531","DOIUrl":null,"url":null,"abstract":"<div><div>A <strong>Peano compactum</strong> means a compact metric space having locally connected components such that at most finitely many of them are of diameter greater than any fixed number <span><math><mi>C</mi><mo>></mo><mn>0</mn></math></span>. Given a compactum <em>K</em> in the extended complex plane <span><math><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>, it is known that there is a finest upper semi-continuous decomposition of <em>K</em> into subcontinua such that the resulting quotient space is a Peano compactum. We call this decomposition the <strong>core decomposition</strong> of <em>K</em> with Peano quotient and its elements <strong>atoms of</strong> <em>K</em>. We show that for any branched covering <span><math><mi>f</mi><mo>:</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>→</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> and any atom <em>d</em> of <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo></math></span>, the image <span><math><mi>f</mi><mo>(</mo><mi>d</mi><mo>)</mo></math></span> is an atom of <em>K</em>. Since rational functions are branched coverings, our result extends earlier ones that are restricted to more limited cases, requiring that <em>f</em> be a polynomial with <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo><mo>=</mo><mi>K</mi></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110531"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model for planar compacta and rational Julia sets\",\"authors\":\"Jun Luo , Yi Yang , Xiaoting Yao\",\"doi\":\"10.1016/j.aim.2025.110531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A <strong>Peano compactum</strong> means a compact metric space having locally connected components such that at most finitely many of them are of diameter greater than any fixed number <span><math><mi>C</mi><mo>></mo><mn>0</mn></math></span>. Given a compactum <em>K</em> in the extended complex plane <span><math><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>, it is known that there is a finest upper semi-continuous decomposition of <em>K</em> into subcontinua such that the resulting quotient space is a Peano compactum. We call this decomposition the <strong>core decomposition</strong> of <em>K</em> with Peano quotient and its elements <strong>atoms of</strong> <em>K</em>. We show that for any branched covering <span><math><mi>f</mi><mo>:</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>→</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> and any atom <em>d</em> of <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo></math></span>, the image <span><math><mi>f</mi><mo>(</mo><mi>d</mi><mo>)</mo></math></span> is an atom of <em>K</em>. Since rational functions are branched coverings, our result extends earlier ones that are restricted to more limited cases, requiring that <em>f</em> be a polynomial with <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo><mo>=</mo><mi>K</mi></math></span>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"480 \",\"pages\":\"Article 110531\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825004293\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004293","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A model for planar compacta and rational Julia sets
A Peano compactum means a compact metric space having locally connected components such that at most finitely many of them are of diameter greater than any fixed number . Given a compactum K in the extended complex plane , it is known that there is a finest upper semi-continuous decomposition of K into subcontinua such that the resulting quotient space is a Peano compactum. We call this decomposition the core decomposition of K with Peano quotient and its elements atoms ofK. We show that for any branched covering and any atom d of , the image is an atom of K. Since rational functions are branched coverings, our result extends earlier ones that are restricted to more limited cases, requiring that f be a polynomial with .
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.