平面紧集与有理Julia集的一个模型

IF 1.5 1区 数学 Q1 MATHEMATICS
Jun Luo , Yi Yang , Xiaoting Yao
{"title":"平面紧集与有理Julia集的一个模型","authors":"Jun Luo ,&nbsp;Yi Yang ,&nbsp;Xiaoting Yao","doi":"10.1016/j.aim.2025.110531","DOIUrl":null,"url":null,"abstract":"<div><div>A <strong>Peano compactum</strong> means a compact metric space having locally connected components such that at most finitely many of them are of diameter greater than any fixed number <span><math><mi>C</mi><mo>&gt;</mo><mn>0</mn></math></span>. Given a compactum <em>K</em> in the extended complex plane <span><math><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>, it is known that there is a finest upper semi-continuous decomposition of <em>K</em> into subcontinua such that the resulting quotient space is a Peano compactum. We call this decomposition the <strong>core decomposition</strong> of <em>K</em> with Peano quotient and its elements <strong>atoms of</strong> <em>K</em>. We show that for any branched covering <span><math><mi>f</mi><mo>:</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>→</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> and any atom <em>d</em> of <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo></math></span>, the image <span><math><mi>f</mi><mo>(</mo><mi>d</mi><mo>)</mo></math></span> is an atom of <em>K</em>. Since rational functions are branched coverings, our result extends earlier ones that are restricted to more limited cases, requiring that <em>f</em> be a polynomial with <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo><mo>=</mo><mi>K</mi></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110531"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model for planar compacta and rational Julia sets\",\"authors\":\"Jun Luo ,&nbsp;Yi Yang ,&nbsp;Xiaoting Yao\",\"doi\":\"10.1016/j.aim.2025.110531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A <strong>Peano compactum</strong> means a compact metric space having locally connected components such that at most finitely many of them are of diameter greater than any fixed number <span><math><mi>C</mi><mo>&gt;</mo><mn>0</mn></math></span>. Given a compactum <em>K</em> in the extended complex plane <span><math><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>, it is known that there is a finest upper semi-continuous decomposition of <em>K</em> into subcontinua such that the resulting quotient space is a Peano compactum. We call this decomposition the <strong>core decomposition</strong> of <em>K</em> with Peano quotient and its elements <strong>atoms of</strong> <em>K</em>. We show that for any branched covering <span><math><mi>f</mi><mo>:</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>→</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> and any atom <em>d</em> of <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo></math></span>, the image <span><math><mi>f</mi><mo>(</mo><mi>d</mi><mo>)</mo></math></span> is an atom of <em>K</em>. Since rational functions are branched coverings, our result extends earlier ones that are restricted to more limited cases, requiring that <em>f</em> be a polynomial with <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo><mo>=</mo><mi>K</mi></math></span>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"480 \",\"pages\":\"Article 110531\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825004293\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004293","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

皮亚诺紧致是指一个紧致度量空间,它具有局部连通的分量,使得其中最多有有限个分量的直径大于任意定数C>;0。在扩展复平面C - C上给定一个紧致K,已知存在K的最优上半连续分解为次连续,使得所得到的商空间是一个Peano紧致。我们将这种分解称为K与Peano商及其元素K原子的核心分解。我们证明了对于任何分支覆盖f:C→C,以及f−1(K)的任何原子d,像f(d)是K的一个原子。由于有理函数是分支覆盖,我们的结果扩展了先前的那些限制在更有限情况下的结果,要求f是一个多项式,且f−1(K)=K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A model for planar compacta and rational Julia sets
A Peano compactum means a compact metric space having locally connected components such that at most finitely many of them are of diameter greater than any fixed number C>0. Given a compactum K in the extended complex plane Cˆ, it is known that there is a finest upper semi-continuous decomposition of K into subcontinua such that the resulting quotient space is a Peano compactum. We call this decomposition the core decomposition of K with Peano quotient and its elements atoms of K. We show that for any branched covering f:CˆCˆ and any atom d of f1(K), the image f(d) is an atom of K. Since rational functions are branched coverings, our result extends earlier ones that are restricted to more limited cases, requiring that f be a polynomial with f1(K)=K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信