Hugo Araújo , Carlos Gustavo Moreira , Alex Zamudio Espinosa
{"title":"具有大Hausdorff维数的共形正则Cantor集的稳定交","authors":"Hugo Araújo , Carlos Gustavo Moreira , Alex Zamudio Espinosa","doi":"10.1016/j.aim.2025.110507","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we prove that among pairs <span><math><mi>K</mi><mo>,</mo><mspace></mspace><msup><mrow><mi>K</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>⊂</mo><mi>C</mi></math></span> of conformal dynamically defined Cantor sets with sum of Hausdorff dimensions <span><math><mi>H</mi><mi>D</mi><mo>(</mo><mi>K</mi><mo>)</mo><mo>+</mo><mi>H</mi><mi>D</mi><mo>(</mo><msup><mrow><mi>K</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo><mo>></mo><mn>2</mn></math></span>, there is an open and dense subset of such pairs verifying <span><math><mtext>int</mtext><mo>(</mo><msup><mrow><mi>K</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>−</mo><mi>K</mi><mo>)</mo><mo>≠</mo><mo>∅</mo></math></span>. This is motivated by the work <span><span>[11]</span></span>, where Moreira and Yoccoz proved a similar statement for dynamically defined Cantor sets in the real line. Here we adapt their argument to the context of conformal Cantor sets in the complex plane, this requires the introduction of several new concepts and a more detailed analysis in some parts of the argument.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110507"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable intersections of conformal regular Cantor sets with large Hausdorff dimensions\",\"authors\":\"Hugo Araújo , Carlos Gustavo Moreira , Alex Zamudio Espinosa\",\"doi\":\"10.1016/j.aim.2025.110507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we prove that among pairs <span><math><mi>K</mi><mo>,</mo><mspace></mspace><msup><mrow><mi>K</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>⊂</mo><mi>C</mi></math></span> of conformal dynamically defined Cantor sets with sum of Hausdorff dimensions <span><math><mi>H</mi><mi>D</mi><mo>(</mo><mi>K</mi><mo>)</mo><mo>+</mo><mi>H</mi><mi>D</mi><mo>(</mo><msup><mrow><mi>K</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo><mo>></mo><mn>2</mn></math></span>, there is an open and dense subset of such pairs verifying <span><math><mtext>int</mtext><mo>(</mo><msup><mrow><mi>K</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>−</mo><mi>K</mi><mo>)</mo><mo>≠</mo><mo>∅</mo></math></span>. This is motivated by the work <span><span>[11]</span></span>, where Moreira and Yoccoz proved a similar statement for dynamically defined Cantor sets in the real line. Here we adapt their argument to the context of conformal Cantor sets in the complex plane, this requires the introduction of several new concepts and a more detailed analysis in some parts of the argument.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"480 \",\"pages\":\"Article 110507\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825004050\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004050","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Stable intersections of conformal regular Cantor sets with large Hausdorff dimensions
In this paper we prove that among pairs of conformal dynamically defined Cantor sets with sum of Hausdorff dimensions , there is an open and dense subset of such pairs verifying . This is motivated by the work [11], where Moreira and Yoccoz proved a similar statement for dynamically defined Cantor sets in the real line. Here we adapt their argument to the context of conformal Cantor sets in the complex plane, this requires the introduction of several new concepts and a more detailed analysis in some parts of the argument.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.