{"title":"具有K-wise相互作用的非线性Schrödinger系统的最小能量解","authors":"Lorenzo Giaretto, Nicola Soave","doi":"10.1016/j.na.2025.113938","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we establish existence and properties of minimal energy solutions for the weakly coupled system <span><span><span><math><mrow><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mi>K</mi><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><mi>β</mi><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><munder><mrow><mo>∏</mo></mrow><mrow><mi>j</mi><mo>≠</mo><mi>i</mi></mrow></munder><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mfenced><mspace></mspace><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>K</mi><mo>,</mo></mrow></math></span></span></span>characterized by <span><math><mi>K</mi></math></span>-wise interaction (namely the interaction term involves the product of all the components). We consider both attractive (<span><math><mrow><mi>β</mi><mo>></mo><mn>0</mn></mrow></math></span>) and repulsive cases (<span><math><mrow><mi>β</mi><mo><</mo><mn>0</mn></mrow></math></span>), and we give sufficient conditions on <span><math><mi>β</mi></math></span> in order to have least energy fully non-trivial solutions, if necessary under a radial constraint. We also study the asymptotic behaviour of least energy fully non-trivial radial solutions in the limit of strong competition <span><math><mrow><mi>β</mi><mo>→</mo><mo>−</mo><mi>∞</mi></mrow></math></span>, showing partial segregation phenomena which differ substantially from those arising in pairwise interaction models.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113938"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On least energy solutions for a nonlinear Schrödinger system with K-wise interaction\",\"authors\":\"Lorenzo Giaretto, Nicola Soave\",\"doi\":\"10.1016/j.na.2025.113938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we establish existence and properties of minimal energy solutions for the weakly coupled system <span><span><span><math><mrow><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mi>K</mi><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><mi>β</mi><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><munder><mrow><mo>∏</mo></mrow><mrow><mi>j</mi><mo>≠</mo><mi>i</mi></mrow></munder><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mfenced><mspace></mspace><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>K</mi><mo>,</mo></mrow></math></span></span></span>characterized by <span><math><mi>K</mi></math></span>-wise interaction (namely the interaction term involves the product of all the components). We consider both attractive (<span><math><mrow><mi>β</mi><mo>></mo><mn>0</mn></mrow></math></span>) and repulsive cases (<span><math><mrow><mi>β</mi><mo><</mo><mn>0</mn></mrow></math></span>), and we give sufficient conditions on <span><math><mi>β</mi></math></span> in order to have least energy fully non-trivial solutions, if necessary under a radial constraint. We also study the asymptotic behaviour of least energy fully non-trivial radial solutions in the limit of strong competition <span><math><mrow><mi>β</mi><mo>→</mo><mo>−</mo><mi>∞</mi></mrow></math></span>, showing partial segregation phenomena which differ substantially from those arising in pairwise interaction models.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"262 \",\"pages\":\"Article 113938\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001907\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001907","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On least energy solutions for a nonlinear Schrödinger system with K-wise interaction
In this paper we establish existence and properties of minimal energy solutions for the weakly coupled system characterized by -wise interaction (namely the interaction term involves the product of all the components). We consider both attractive () and repulsive cases (), and we give sufficient conditions on in order to have least energy fully non-trivial solutions, if necessary under a radial constraint. We also study the asymptotic behaviour of least energy fully non-trivial radial solutions in the limit of strong competition , showing partial segregation phenomena which differ substantially from those arising in pairwise interaction models.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.