Abn-BLIP:异常对齐引导语言图像预训练用于肺栓塞诊断和CTPA报告生成

IF 11.8 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhusi Zhong , Yuli Wang , Lulu Bi , Zhuoqi Ma , Sun Ho Ahn , Christopher J. Mullin , Colin F. Greineder , Michael K. Atalay , Scott Collins , Grayson L. Baird , Cheng Ting Lin , J. Webster Stayman , Todd M. Kolb , Ihab Kamel , Harrison X. Bai , Zhicheng Jiao
{"title":"Abn-BLIP:异常对齐引导语言图像预训练用于肺栓塞诊断和CTPA报告生成","authors":"Zhusi Zhong ,&nbsp;Yuli Wang ,&nbsp;Lulu Bi ,&nbsp;Zhuoqi Ma ,&nbsp;Sun Ho Ahn ,&nbsp;Christopher J. Mullin ,&nbsp;Colin F. Greineder ,&nbsp;Michael K. Atalay ,&nbsp;Scott Collins ,&nbsp;Grayson L. Baird ,&nbsp;Cheng Ting Lin ,&nbsp;J. Webster Stayman ,&nbsp;Todd M. Kolb ,&nbsp;Ihab Kamel ,&nbsp;Harrison X. Bai ,&nbsp;Zhicheng Jiao","doi":"10.1016/j.media.2025.103786","DOIUrl":null,"url":null,"abstract":"<div><div>Medical imaging plays a pivotal role in modern healthcare, with computed tomography pulmonary angiography (CTPA) being a critical tool for diagnosing pulmonary embolism and other thoracic conditions. However, the complexity of interpreting CTPA scans and generating accurate radiology reports remains a significant challenge. This paper introduces Abn-BLIP (Abnormality-aligned Bootstrapping Language-Image Pretraining), an advanced diagnosis model designed to align abnormal findings to generate the accuracy and comprehensiveness of radiology reports. By leveraging learnable queries and cross-modal attention mechanisms, our model demonstrates superior performance in detecting abnormalities, reducing missed findings, and generating structured reports compared to existing methods. Our experiments show that Abn-BLIP outperforms state-of-the-art medical vision-language models and 3D report generation methods in both accuracy and clinical relevance. These results highlight the potential of integrating multimodal learning strategies for improving radiology reporting. The source code is available at <span><span>https://github.com/zzs95/abn-blip</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"107 ","pages":"Article 103786"},"PeriodicalIF":11.8000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abn-BLIP: Abnormality-aligned Bootstrapping Language-Image Pre-training for pulmonary embolism diagnosis and report generation from CTPA\",\"authors\":\"Zhusi Zhong ,&nbsp;Yuli Wang ,&nbsp;Lulu Bi ,&nbsp;Zhuoqi Ma ,&nbsp;Sun Ho Ahn ,&nbsp;Christopher J. Mullin ,&nbsp;Colin F. Greineder ,&nbsp;Michael K. Atalay ,&nbsp;Scott Collins ,&nbsp;Grayson L. Baird ,&nbsp;Cheng Ting Lin ,&nbsp;J. Webster Stayman ,&nbsp;Todd M. Kolb ,&nbsp;Ihab Kamel ,&nbsp;Harrison X. Bai ,&nbsp;Zhicheng Jiao\",\"doi\":\"10.1016/j.media.2025.103786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Medical imaging plays a pivotal role in modern healthcare, with computed tomography pulmonary angiography (CTPA) being a critical tool for diagnosing pulmonary embolism and other thoracic conditions. However, the complexity of interpreting CTPA scans and generating accurate radiology reports remains a significant challenge. This paper introduces Abn-BLIP (Abnormality-aligned Bootstrapping Language-Image Pretraining), an advanced diagnosis model designed to align abnormal findings to generate the accuracy and comprehensiveness of radiology reports. By leveraging learnable queries and cross-modal attention mechanisms, our model demonstrates superior performance in detecting abnormalities, reducing missed findings, and generating structured reports compared to existing methods. Our experiments show that Abn-BLIP outperforms state-of-the-art medical vision-language models and 3D report generation methods in both accuracy and clinical relevance. These results highlight the potential of integrating multimodal learning strategies for improving radiology reporting. The source code is available at <span><span>https://github.com/zzs95/abn-blip</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"107 \",\"pages\":\"Article 103786\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841525003329\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525003329","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

医学成像在现代医疗保健中发挥着关键作用,计算机断层肺血管造影(CTPA)是诊断肺栓塞和其他胸部疾病的关键工具。然而,解释CTPA扫描和生成准确的放射学报告的复杂性仍然是一个重大挑战。本文介绍了Abn-BLIP(异常对齐引导语言图像预训练),这是一种先进的诊断模型,旨在对齐异常发现以生成准确性和全面性的放射学报告。通过利用可学习查询和跨模态注意机制,与现有方法相比,我们的模型在检测异常、减少遗漏的发现和生成结构化报告方面表现出卓越的性能。我们的实验表明,Abn-BLIP在准确性和临床相关性方面都优于最先进的医学视觉语言模型和3D报告生成方法。这些结果突出了整合多模式学习策略以改善放射学报告的潜力。源代码可从https://github.com/zzs95/abn-blip获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Abn-BLIP: Abnormality-aligned Bootstrapping Language-Image Pre-training for pulmonary embolism diagnosis and report generation from CTPA

Abn-BLIP: Abnormality-aligned Bootstrapping Language-Image Pre-training for pulmonary embolism diagnosis and report generation from CTPA
Medical imaging plays a pivotal role in modern healthcare, with computed tomography pulmonary angiography (CTPA) being a critical tool for diagnosing pulmonary embolism and other thoracic conditions. However, the complexity of interpreting CTPA scans and generating accurate radiology reports remains a significant challenge. This paper introduces Abn-BLIP (Abnormality-aligned Bootstrapping Language-Image Pretraining), an advanced diagnosis model designed to align abnormal findings to generate the accuracy and comprehensiveness of radiology reports. By leveraging learnable queries and cross-modal attention mechanisms, our model demonstrates superior performance in detecting abnormalities, reducing missed findings, and generating structured reports compared to existing methods. Our experiments show that Abn-BLIP outperforms state-of-the-art medical vision-language models and 3D report generation methods in both accuracy and clinical relevance. These results highlight the potential of integrating multimodal learning strategies for improving radiology reporting. The source code is available at https://github.com/zzs95/abn-blip.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信