C2H4在Au/Ag/ cu -石墨烯上的吸附、电子和传感特性:密度泛函理论研究

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Weiyin Li , Ruiyong Shang , Hao Feng , Meng Wang , Tongli Wei
{"title":"C2H4在Au/Ag/ cu -石墨烯上的吸附、电子和传感特性:密度泛函理论研究","authors":"Weiyin Li ,&nbsp;Ruiyong Shang ,&nbsp;Hao Feng ,&nbsp;Meng Wang ,&nbsp;Tongli Wei","doi":"10.1016/j.physe.2025.116361","DOIUrl":null,"url":null,"abstract":"<div><div>The adsorption properties of C<sub>2</sub>H<sub>4</sub> gas molecules on Au<sub><em>n</em></sub>/Ag<sub><em>n</em></sub>/Cu<sub><em>n</em></sub> (<em>n</em> = 1–3)-graphene (Gp) substrates were investigated theoretically based on density functional theory. The results show that the most stable loading sites on graphene for Au<sub><em>n</em></sub>/Ag<sub><em>n</em></sub>/Cu<sub><em>n</em></sub> (<em>n</em> = 1–3, except for the Ag atom) clusters are the top sites, and the most stable loading site on graphene for the Ag atom is the bridge site. The Cu clusters are chemically loaded onto graphene, and the remaining clusters are physically loaded onto graphene. The adsorption of C<sub>2</sub>H<sub>4</sub> on Ag-Gp is physical, and C<sub>2</sub>H<sub>4</sub> is chemically adsorbed on the remaining systems by generating a new chemical bond. The adsorption abilities for the C<sub>2</sub>H<sub>4</sub> molecule are in the following order: Cu-Gp &gt; Au-Gp &gt; Ag-Gp; Au<sub>2</sub>-Gp &gt; Cu<sub>2</sub>-Gp &gt; Ag<sub>2</sub>-Gp; Au<sub>3</sub>-Gp &gt; Cu<sub>3</sub>-Gp &gt; Ag<sub>3</sub>-Gp. Among the clusters studied, the Au<sub>3</sub>-Gp system has the strongest adsorption effect, and the Ag-cluster-loaded graphene shows the least adsorptive capacity for the C<sub>2</sub>H<sub>4</sub> molecule. The Cu-Gp system has the best sensitivity and the Ag-Gp system has the fastest recovery time for C<sub>2</sub>H<sub>4</sub>.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"175 ","pages":"Article 116361"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption, electronic, and sensing properties of C2H4 on Au/Ag/Cu-graphene: A density functional theory study\",\"authors\":\"Weiyin Li ,&nbsp;Ruiyong Shang ,&nbsp;Hao Feng ,&nbsp;Meng Wang ,&nbsp;Tongli Wei\",\"doi\":\"10.1016/j.physe.2025.116361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The adsorption properties of C<sub>2</sub>H<sub>4</sub> gas molecules on Au<sub><em>n</em></sub>/Ag<sub><em>n</em></sub>/Cu<sub><em>n</em></sub> (<em>n</em> = 1–3)-graphene (Gp) substrates were investigated theoretically based on density functional theory. The results show that the most stable loading sites on graphene for Au<sub><em>n</em></sub>/Ag<sub><em>n</em></sub>/Cu<sub><em>n</em></sub> (<em>n</em> = 1–3, except for the Ag atom) clusters are the top sites, and the most stable loading site on graphene for the Ag atom is the bridge site. The Cu clusters are chemically loaded onto graphene, and the remaining clusters are physically loaded onto graphene. The adsorption of C<sub>2</sub>H<sub>4</sub> on Ag-Gp is physical, and C<sub>2</sub>H<sub>4</sub> is chemically adsorbed on the remaining systems by generating a new chemical bond. The adsorption abilities for the C<sub>2</sub>H<sub>4</sub> molecule are in the following order: Cu-Gp &gt; Au-Gp &gt; Ag-Gp; Au<sub>2</sub>-Gp &gt; Cu<sub>2</sub>-Gp &gt; Ag<sub>2</sub>-Gp; Au<sub>3</sub>-Gp &gt; Cu<sub>3</sub>-Gp &gt; Ag<sub>3</sub>-Gp. Among the clusters studied, the Au<sub>3</sub>-Gp system has the strongest adsorption effect, and the Ag-cluster-loaded graphene shows the least adsorptive capacity for the C<sub>2</sub>H<sub>4</sub> molecule. The Cu-Gp system has the best sensitivity and the Ag-Gp system has the fastest recovery time for C<sub>2</sub>H<sub>4</sub>.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"175 \",\"pages\":\"Article 116361\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947725001912\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725001912","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基于密度泛函理论,研究了C2H4气体分子在Aun/Agn/Cun (n = 1-3)-石墨烯(Gp)基体上的吸附特性。结果表明,Aun/Agn/Cun (n = 1-3,除Ag原子外)簇在石墨烯上最稳定的加载位点为顶部位点,Ag原子在石墨烯上最稳定的加载位点为桥位。铜团簇被化学加载到石墨烯上,其余的团簇被物理加载到石墨烯上。C2H4在Ag-Gp上的吸附是物理吸附,C2H4通过生成新的化学键在其余体系上进行化学吸附。对C2H4分子的吸附能力依次为:Cu-Gp >; Au-Gp > Ag-Gp;Cu2-Gp > Ag2-Gp;Cu3-Gp > Ag3-Gp;在所研究的簇中,Au3-Gp体系对C2H4分子的吸附效果最强,负载ag簇的石墨烯对C2H4分子的吸附能力最低。Cu-Gp体系对C2H4的灵敏度最好,Ag-Gp体系对C2H4的恢复时间最快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adsorption, electronic, and sensing properties of C2H4 on Au/Ag/Cu-graphene: A density functional theory study
The adsorption properties of C2H4 gas molecules on Aun/Agn/Cun (n = 1–3)-graphene (Gp) substrates were investigated theoretically based on density functional theory. The results show that the most stable loading sites on graphene for Aun/Agn/Cun (n = 1–3, except for the Ag atom) clusters are the top sites, and the most stable loading site on graphene for the Ag atom is the bridge site. The Cu clusters are chemically loaded onto graphene, and the remaining clusters are physically loaded onto graphene. The adsorption of C2H4 on Ag-Gp is physical, and C2H4 is chemically adsorbed on the remaining systems by generating a new chemical bond. The adsorption abilities for the C2H4 molecule are in the following order: Cu-Gp > Au-Gp > Ag-Gp; Au2-Gp > Cu2-Gp > Ag2-Gp; Au3-Gp > Cu3-Gp > Ag3-Gp. Among the clusters studied, the Au3-Gp system has the strongest adsorption effect, and the Ag-cluster-loaded graphene shows the least adsorptive capacity for the C2H4 molecule. The Cu-Gp system has the best sensitivity and the Ag-Gp system has the fastest recovery time for C2H4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信