时空位移非局部方程的完全可积性

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
Baoqiang Xia
{"title":"时空位移非局部方程的完全可积性","authors":"Baoqiang Xia","doi":"10.1016/j.physd.2025.134931","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the complete integrability of soliton equations with shifted nonlocal reductions under rapidly decaying boundary conditions. Using the Ablowitz–Ladik (AL) system and the Ablowitz–Kaup–Newell–Segur (AKNS) system as illustrative examples, we establish the complete integrability of models with space and space–time shifted nonlocal reductions through the explicit construction of canonical action–angle variables from their scattering data. Moreover, we demonstrate that, unlike the space and space–time shifted nonlocal cases, time-shifted nonlocal reductions are incompatible with the Poisson bracket structures of the scattering data in the presence of discrete spectrum.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"483 ","pages":"Article 134931"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the complete integrability of space–time shifted nonlocal equations\",\"authors\":\"Baoqiang Xia\",\"doi\":\"10.1016/j.physd.2025.134931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the complete integrability of soliton equations with shifted nonlocal reductions under rapidly decaying boundary conditions. Using the Ablowitz–Ladik (AL) system and the Ablowitz–Kaup–Newell–Segur (AKNS) system as illustrative examples, we establish the complete integrability of models with space and space–time shifted nonlocal reductions through the explicit construction of canonical action–angle variables from their scattering data. Moreover, we demonstrate that, unlike the space and space–time shifted nonlocal cases, time-shifted nonlocal reductions are incompatible with the Poisson bracket structures of the scattering data in the presence of discrete spectrum.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"483 \",\"pages\":\"Article 134931\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925004087\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925004087","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了在快速衰减边界条件下具有位移非局部约化的孤子方程的完全可积性。以Ablowitz-Ladik (AL)系统和ablowitz - kap - newwell - segur (AKNS)系统为例,通过显式构造正则作用角变量,建立了具有空间和时空位移的非局部约简模型的完全可积性。此外,我们还证明,与空间和时空位移的非局部情况不同,在离散谱存在的情况下,时移的非局部约简与散射数据的泊松括号结构不相容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the complete integrability of space–time shifted nonlocal equations
We investigate the complete integrability of soliton equations with shifted nonlocal reductions under rapidly decaying boundary conditions. Using the Ablowitz–Ladik (AL) system and the Ablowitz–Kaup–Newell–Segur (AKNS) system as illustrative examples, we establish the complete integrability of models with space and space–time shifted nonlocal reductions through the explicit construction of canonical action–angle variables from their scattering data. Moreover, we demonstrate that, unlike the space and space–time shifted nonlocal cases, time-shifted nonlocal reductions are incompatible with the Poisson bracket structures of the scattering data in the presence of discrete spectrum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信