交代岩石圈地幔在诺里尔斯克1号镍铜铂族元素硫化物矿床形成中的作用:Cu同位素证据

IF 3.6 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Aleksandr Marfin , Matthew Jacek Brzozowski , Peter Lightfoot , Xin Ding , Michael Bizimis , Shelby True Rader , Molly Karnes , Valeriya Brovchenko , Tatyana Radomskaya , Alexei Ivanov , Olga Belozerova
{"title":"交代岩石圈地幔在诺里尔斯克1号镍铜铂族元素硫化物矿床形成中的作用:Cu同位素证据","authors":"Aleksandr Marfin ,&nbsp;Matthew Jacek Brzozowski ,&nbsp;Peter Lightfoot ,&nbsp;Xin Ding ,&nbsp;Michael Bizimis ,&nbsp;Shelby True Rader ,&nbsp;Molly Karnes ,&nbsp;Valeriya Brovchenko ,&nbsp;Tatyana Radomskaya ,&nbsp;Alexei Ivanov ,&nbsp;Olga Belozerova","doi":"10.1016/j.chemgeo.2025.123034","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanisms of formation of magmatic Ni–Cu–platinum-group element (PGE) sulfide ore deposits, such as those of the world-class Norilsk–Talnakh mineral system, have been extensively studied, but the source of metals in these systems remains unclear. Potential metal sources are a mantle plume (derived from the lower mantle), subcontinental lithospheric mantle, and crustal materials. To provide insights into the source of metals for the Norilsk–Talnakh system, we integrate new Cu isotope data of chalcopyrite with bulk-rock major-element, trace-element, and PGE–Au contents from the Norilsk 1 deposit in Polar Siberia.</div><div>The <sup>65</sup>Cu/<sup>63</sup>Cu ratios (reported as δ<sup>65</sup>Cu ratio relative to SRM NIST 976) of disseminated sulfides and massive sulfide samples vary from −0.3 to 0.42 ‰ and − 0.33 to 0.35 ‰, respectively. These values extend to both lower and higher values compared to unmodified upper mantle-derived rocks (δ<sup>65</sup>Cu<sub>mantle</sub> from −0.14 to 0.26 ‰). These isotopic signatures cannot be explained by post-magmatic alteration, metamorphic processes, or contamination by upper crustal rocks because they do not correlate with the abundance of secondary minerals, S/Se and Th/Nb ratios, or MgO contents. The variation of δ<sup>65</sup>Cu in disseminated sulfides is consistent with progressive interaction of isotopically light sulfide liquid (δ<sup>65</sup>Cu ≈ −0.5 ‰) with isotopically heavy silicate melt (δ<sup>65</sup>Cu ≈ 0.63 ‰). This isotopic range reflects heterogeneity in the mantle source to the Norilsk 1 deposit. The heavy-δ<sup>65</sup>Cu component may have been inherited from a pyroxenite source in the metasomatized lithospheric mantle beneath the Siberian Craton. After exhaustion of the pyroxenitic component in the source during melting, δ<sup>65</sup>Cu values returned to mantle values, where subsequent magma pulses produced disseminated sulfides with δ<sup>65</sup>Cu values less than 0, the variability of which can be explained by Rayleigh fractionation of the sulfide liquid. The δ<sup>65</sup>Cu values of chalcopyrite in MS are positively correlated with bulk-rock Cu/(Cu + Ni) ratios, consistent with the fractionation of ∼40–60 % monosulfide solid solution from the original sulfide liquid. Our study demonstrates a potential contribution from metasomatized subcontinental lithospheric mantle and a pyroxenitic component to the formation of the Norilsk 1 Ni–Cu–PGE deposit, and highlights the important influence of previous subduction events in modifying and re-enriching the subcontinental lithospheric mantle.</div></div>","PeriodicalId":9847,"journal":{"name":"Chemical Geology","volume":"695 ","pages":"Article 123034"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of metasomatized lithospheric mantle in generating the Norilsk 1 Ni–Cu–platinum-group element sulfide deposit: Cu isotope evidence\",\"authors\":\"Aleksandr Marfin ,&nbsp;Matthew Jacek Brzozowski ,&nbsp;Peter Lightfoot ,&nbsp;Xin Ding ,&nbsp;Michael Bizimis ,&nbsp;Shelby True Rader ,&nbsp;Molly Karnes ,&nbsp;Valeriya Brovchenko ,&nbsp;Tatyana Radomskaya ,&nbsp;Alexei Ivanov ,&nbsp;Olga Belozerova\",\"doi\":\"10.1016/j.chemgeo.2025.123034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mechanisms of formation of magmatic Ni–Cu–platinum-group element (PGE) sulfide ore deposits, such as those of the world-class Norilsk–Talnakh mineral system, have been extensively studied, but the source of metals in these systems remains unclear. Potential metal sources are a mantle plume (derived from the lower mantle), subcontinental lithospheric mantle, and crustal materials. To provide insights into the source of metals for the Norilsk–Talnakh system, we integrate new Cu isotope data of chalcopyrite with bulk-rock major-element, trace-element, and PGE–Au contents from the Norilsk 1 deposit in Polar Siberia.</div><div>The <sup>65</sup>Cu/<sup>63</sup>Cu ratios (reported as δ<sup>65</sup>Cu ratio relative to SRM NIST 976) of disseminated sulfides and massive sulfide samples vary from −0.3 to 0.42 ‰ and − 0.33 to 0.35 ‰, respectively. These values extend to both lower and higher values compared to unmodified upper mantle-derived rocks (δ<sup>65</sup>Cu<sub>mantle</sub> from −0.14 to 0.26 ‰). These isotopic signatures cannot be explained by post-magmatic alteration, metamorphic processes, or contamination by upper crustal rocks because they do not correlate with the abundance of secondary minerals, S/Se and Th/Nb ratios, or MgO contents. The variation of δ<sup>65</sup>Cu in disseminated sulfides is consistent with progressive interaction of isotopically light sulfide liquid (δ<sup>65</sup>Cu ≈ −0.5 ‰) with isotopically heavy silicate melt (δ<sup>65</sup>Cu ≈ 0.63 ‰). This isotopic range reflects heterogeneity in the mantle source to the Norilsk 1 deposit. The heavy-δ<sup>65</sup>Cu component may have been inherited from a pyroxenite source in the metasomatized lithospheric mantle beneath the Siberian Craton. After exhaustion of the pyroxenitic component in the source during melting, δ<sup>65</sup>Cu values returned to mantle values, where subsequent magma pulses produced disseminated sulfides with δ<sup>65</sup>Cu values less than 0, the variability of which can be explained by Rayleigh fractionation of the sulfide liquid. The δ<sup>65</sup>Cu values of chalcopyrite in MS are positively correlated with bulk-rock Cu/(Cu + Ni) ratios, consistent with the fractionation of ∼40–60 % monosulfide solid solution from the original sulfide liquid. Our study demonstrates a potential contribution from metasomatized subcontinental lithospheric mantle and a pyroxenitic component to the formation of the Norilsk 1 Ni–Cu–PGE deposit, and highlights the important influence of previous subduction events in modifying and re-enriching the subcontinental lithospheric mantle.</div></div>\",\"PeriodicalId\":9847,\"journal\":{\"name\":\"Chemical Geology\",\"volume\":\"695 \",\"pages\":\"Article 123034\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009254125004243\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009254125004243","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

岩浆镍铜铂族元素(PGE)硫化物矿床的形成机制,如世界级的Norilsk-Talnakh矿物系统,已被广泛研究,但这些系统中的金属来源仍不清楚。潜在的金属来源是地幔柱(来自下地幔)、次大陆岩石圈地幔和地壳物质。为了深入了解Norilsk - talnakh系统的金属来源,我们将新的黄铜矿铜同位素数据与北极西伯利亚Norilsk 1矿床的大块岩石主元素、微量元素和PGE-Au含量进行了整合。浸染硫化物和块状硫化物样品的65Cu/63Cu比值(报告为δ65Cu比值相对于SRM NIST 976)分别为- 0.3 ~ 0.42‰和- 0.33 ~ 0.35‰。与未变质的上地幔源岩(δ65Cumantle从- 0.14‰到0.26‰)相比,这些值既低又高。这些同位素特征不能用岩浆后蚀变、变质作用或上地壳岩石污染来解释,因为它们与次生矿物丰度、S/Se和Th/Nb比或MgO含量无关。浸染型硫化物中δ65Cu的变化符合同位素轻硫化物液体(δ65Cu≈−0.5‰)与同位素重硅酸盐熔体(δ65Cu≈0.63‰)的递进相互作用。该同位素范围反映了诺里尔斯克1号矿床地幔源的非均质性。重-δ65Cu成分可能继承自西伯利亚克拉通下交代岩石圈地幔中的辉石岩源。在熔融过程中,岩浆源中的辉石岩成分耗尽后,δ65Cu值返回到地幔值,随后的岩浆脉冲产生的浸染状硫化物δ65Cu值小于0,其变异性可以用硫化物液体的瑞利分馏来解释。MS中黄铜矿的δ65Cu值与岩体Cu/(Cu + Ni)比值呈正相关,与原始硫化物液体中分离出~ 40 ~ 60%的单硫化物固溶体相一致。研究表明,变质的次大陆岩石圈地幔和辉生岩组分对诺利尔斯克1号镍铜pge矿床的形成有潜在贡献,并强调了以前的俯冲事件对次大陆岩石圈地幔的改造和再富集的重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The role of metasomatized lithospheric mantle in generating the Norilsk 1 Ni–Cu–platinum-group element sulfide deposit: Cu isotope evidence
The mechanisms of formation of magmatic Ni–Cu–platinum-group element (PGE) sulfide ore deposits, such as those of the world-class Norilsk–Talnakh mineral system, have been extensively studied, but the source of metals in these systems remains unclear. Potential metal sources are a mantle plume (derived from the lower mantle), subcontinental lithospheric mantle, and crustal materials. To provide insights into the source of metals for the Norilsk–Talnakh system, we integrate new Cu isotope data of chalcopyrite with bulk-rock major-element, trace-element, and PGE–Au contents from the Norilsk 1 deposit in Polar Siberia.
The 65Cu/63Cu ratios (reported as δ65Cu ratio relative to SRM NIST 976) of disseminated sulfides and massive sulfide samples vary from −0.3 to 0.42 ‰ and − 0.33 to 0.35 ‰, respectively. These values extend to both lower and higher values compared to unmodified upper mantle-derived rocks (δ65Cumantle from −0.14 to 0.26 ‰). These isotopic signatures cannot be explained by post-magmatic alteration, metamorphic processes, or contamination by upper crustal rocks because they do not correlate with the abundance of secondary minerals, S/Se and Th/Nb ratios, or MgO contents. The variation of δ65Cu in disseminated sulfides is consistent with progressive interaction of isotopically light sulfide liquid (δ65Cu ≈ −0.5 ‰) with isotopically heavy silicate melt (δ65Cu ≈ 0.63 ‰). This isotopic range reflects heterogeneity in the mantle source to the Norilsk 1 deposit. The heavy-δ65Cu component may have been inherited from a pyroxenite source in the metasomatized lithospheric mantle beneath the Siberian Craton. After exhaustion of the pyroxenitic component in the source during melting, δ65Cu values returned to mantle values, where subsequent magma pulses produced disseminated sulfides with δ65Cu values less than 0, the variability of which can be explained by Rayleigh fractionation of the sulfide liquid. The δ65Cu values of chalcopyrite in MS are positively correlated with bulk-rock Cu/(Cu + Ni) ratios, consistent with the fractionation of ∼40–60 % monosulfide solid solution from the original sulfide liquid. Our study demonstrates a potential contribution from metasomatized subcontinental lithospheric mantle and a pyroxenitic component to the formation of the Norilsk 1 Ni–Cu–PGE deposit, and highlights the important influence of previous subduction events in modifying and re-enriching the subcontinental lithospheric mantle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Geology
Chemical Geology 地学-地球化学与地球物理
CiteScore
7.20
自引率
10.30%
发文量
374
审稿时长
3.6 months
期刊介绍: Chemical Geology is an international journal that publishes original research papers on isotopic and elemental geochemistry, geochronology and cosmochemistry. The Journal focuses on chemical processes in igneous, metamorphic, and sedimentary petrology, low- and high-temperature aqueous solutions, biogeochemistry, the environment and cosmochemistry. Papers that are field, experimentally, or computationally based are appropriate if they are of broad international interest. The Journal generally does not publish papers that are primarily of regional or local interest, or which are primarily focused on remediation and applied geochemistry. The Journal also welcomes innovative papers dealing with significant analytical advances that are of wide interest in the community and extend significantly beyond the scope of what would be included in the methods section of a standard research paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信