log Del Pezzo对的k模空间

IF 1.5 1区 数学 Q1 MATHEMATICS
Long Pan , Fei Si , Haoyu Wu
{"title":"log Del Pezzo对的k模空间","authors":"Long Pan ,&nbsp;Fei Si ,&nbsp;Haoyu Wu","doi":"10.1016/j.aim.2025.110536","DOIUrl":null,"url":null,"abstract":"<div><div>We establish the full explicit wall-crossings for K-moduli space <span><math><msup><mrow><mover><mrow><mi>P</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>K</mi></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span> of degree 8 del Pezzo pairs <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>c</mi><mi>C</mi><mo>)</mo></math></span>, where generically <span><math><mi>X</mi><mo>≅</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mi>C</mi><mo>∼</mo><mo>−</mo><mn>2</mn><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span>. We also show that the K-moduli spaces <span><math><msup><mrow><mover><mrow><mi>P</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>K</mi></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span> coincide with the Hassett-Keel-Looijenga (HKL) models <span><math><mi>F</mi><mo>(</mo><mi>s</mi><mo>)</mo></math></span> of an 18-dimensional locally symmetric space associated with the lattice <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>⊕</mo><msup><mrow><mi>U</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⊕</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>⊕</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> under the transformation <span><math><mi>s</mi><mo>(</mo><mi>c</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn><mo>−</mo><mn>2</mn><mi>c</mi></mrow><mrow><mn>56</mn><mi>c</mi><mo>−</mo><mn>4</mn></mrow></mfrac></math></span>. This implies that the K-moduli spaces interpolate the GIT partial compactification and the Baily-Borel compactification for the moduli space of smooth Del Pezzo pairs. Some discussions concerning the relationship to KSBA moduli spaces are also provided.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"481 ","pages":"Article 110536"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"K-moduli spaces of log Del Pezzo pairs\",\"authors\":\"Long Pan ,&nbsp;Fei Si ,&nbsp;Haoyu Wu\",\"doi\":\"10.1016/j.aim.2025.110536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish the full explicit wall-crossings for K-moduli space <span><math><msup><mrow><mover><mrow><mi>P</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>K</mi></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span> of degree 8 del Pezzo pairs <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>c</mi><mi>C</mi><mo>)</mo></math></span>, where generically <span><math><mi>X</mi><mo>≅</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mi>C</mi><mo>∼</mo><mo>−</mo><mn>2</mn><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span>. We also show that the K-moduli spaces <span><math><msup><mrow><mover><mrow><mi>P</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>K</mi></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span> coincide with the Hassett-Keel-Looijenga (HKL) models <span><math><mi>F</mi><mo>(</mo><mi>s</mi><mo>)</mo></math></span> of an 18-dimensional locally symmetric space associated with the lattice <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>⊕</mo><msup><mrow><mi>U</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⊕</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>⊕</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> under the transformation <span><math><mi>s</mi><mo>(</mo><mi>c</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn><mo>−</mo><mn>2</mn><mi>c</mi></mrow><mrow><mn>56</mn><mi>c</mi><mo>−</mo><mn>4</mn></mrow></mfrac></math></span>. This implies that the K-moduli spaces interpolate the GIT partial compactification and the Baily-Borel compactification for the moduli space of smooth Del Pezzo pairs. Some discussions concerning the relationship to KSBA moduli spaces are also provided.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"481 \",\"pages\":\"Article 110536\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825004347\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004347","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了阶为8 del Pezzo对(X,cC)的K模空间P形式K(c)的完全显式壁交,其中一般为X × F1和c ~−2KX。我们还证明了在变换s(c)=1 - 2c56c - 4下,与晶格E8⊕U2⊕E7⊕A1相关联的18维局部对称空间的K模空间P (c)与hasset - keel - looijenga (HKL)模型F(s)相吻合。这表明k模空间插值光滑Del Pezzo对模空间的GIT偏紧化和Baily-Borel紧化。讨论了与KSBA模空间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
K-moduli spaces of log Del Pezzo pairs
We establish the full explicit wall-crossings for K-moduli space PK(c) of degree 8 del Pezzo pairs (X,cC), where generically XF1 and C2KX. We also show that the K-moduli spaces PK(c) coincide with the Hassett-Keel-Looijenga (HKL) models F(s) of an 18-dimensional locally symmetric space associated with the lattice E8U2E7A1 under the transformation s(c)=12c56c4. This implies that the K-moduli spaces interpolate the GIT partial compactification and the Baily-Borel compactification for the moduli space of smooth Del Pezzo pairs. Some discussions concerning the relationship to KSBA moduli spaces are also provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信