{"title":"log Del Pezzo对的k模空间","authors":"Long Pan , Fei Si , Haoyu Wu","doi":"10.1016/j.aim.2025.110536","DOIUrl":null,"url":null,"abstract":"<div><div>We establish the full explicit wall-crossings for K-moduli space <span><math><msup><mrow><mover><mrow><mi>P</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>K</mi></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span> of degree 8 del Pezzo pairs <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>c</mi><mi>C</mi><mo>)</mo></math></span>, where generically <span><math><mi>X</mi><mo>≅</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mi>C</mi><mo>∼</mo><mo>−</mo><mn>2</mn><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span>. We also show that the K-moduli spaces <span><math><msup><mrow><mover><mrow><mi>P</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>K</mi></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span> coincide with the Hassett-Keel-Looijenga (HKL) models <span><math><mi>F</mi><mo>(</mo><mi>s</mi><mo>)</mo></math></span> of an 18-dimensional locally symmetric space associated with the lattice <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>⊕</mo><msup><mrow><mi>U</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⊕</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>⊕</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> under the transformation <span><math><mi>s</mi><mo>(</mo><mi>c</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn><mo>−</mo><mn>2</mn><mi>c</mi></mrow><mrow><mn>56</mn><mi>c</mi><mo>−</mo><mn>4</mn></mrow></mfrac></math></span>. This implies that the K-moduli spaces interpolate the GIT partial compactification and the Baily-Borel compactification for the moduli space of smooth Del Pezzo pairs. Some discussions concerning the relationship to KSBA moduli spaces are also provided.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"481 ","pages":"Article 110536"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"K-moduli spaces of log Del Pezzo pairs\",\"authors\":\"Long Pan , Fei Si , Haoyu Wu\",\"doi\":\"10.1016/j.aim.2025.110536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish the full explicit wall-crossings for K-moduli space <span><math><msup><mrow><mover><mrow><mi>P</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>K</mi></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span> of degree 8 del Pezzo pairs <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>c</mi><mi>C</mi><mo>)</mo></math></span>, where generically <span><math><mi>X</mi><mo>≅</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mi>C</mi><mo>∼</mo><mo>−</mo><mn>2</mn><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span>. We also show that the K-moduli spaces <span><math><msup><mrow><mover><mrow><mi>P</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>K</mi></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span> coincide with the Hassett-Keel-Looijenga (HKL) models <span><math><mi>F</mi><mo>(</mo><mi>s</mi><mo>)</mo></math></span> of an 18-dimensional locally symmetric space associated with the lattice <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>⊕</mo><msup><mrow><mi>U</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⊕</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>⊕</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> under the transformation <span><math><mi>s</mi><mo>(</mo><mi>c</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn><mo>−</mo><mn>2</mn><mi>c</mi></mrow><mrow><mn>56</mn><mi>c</mi><mo>−</mo><mn>4</mn></mrow></mfrac></math></span>. This implies that the K-moduli spaces interpolate the GIT partial compactification and the Baily-Borel compactification for the moduli space of smooth Del Pezzo pairs. Some discussions concerning the relationship to KSBA moduli spaces are also provided.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"481 \",\"pages\":\"Article 110536\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825004347\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004347","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们建立了阶为8 del Pezzo对(X,cC)的K模空间P形式K(c)的完全显式壁交,其中一般为X × F1和c ~−2KX。我们还证明了在变换s(c)=1 - 2c56c - 4下,与晶格E8⊕U2⊕E7⊕A1相关联的18维局部对称空间的K模空间P (c)与hasset - keel - looijenga (HKL)模型F(s)相吻合。这表明k模空间插值光滑Del Pezzo对模空间的GIT偏紧化和Baily-Borel紧化。讨论了与KSBA模空间的关系。
We establish the full explicit wall-crossings for K-moduli space of degree 8 del Pezzo pairs , where generically and . We also show that the K-moduli spaces coincide with the Hassett-Keel-Looijenga (HKL) models of an 18-dimensional locally symmetric space associated with the lattice under the transformation . This implies that the K-moduli spaces interpolate the GIT partial compactification and the Baily-Borel compactification for the moduli space of smooth Del Pezzo pairs. Some discussions concerning the relationship to KSBA moduli spaces are also provided.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.