Canfeng Liu , Binhui Wang , Hui Dong , Yihan Pan , Jiawen Lin , Jintian Yang , Yihui Tao , Hao Sun
{"title":"基于广义变压器模型的核酸反应时间序列分析","authors":"Canfeng Liu , Binhui Wang , Hui Dong , Yihan Pan , Jiawen Lin , Jintian Yang , Yihui Tao , Hao Sun","doi":"10.1016/j.chemolab.2025.105522","DOIUrl":null,"url":null,"abstract":"<div><div>The contemporary landscape of medical diagnostics and therapeutic interventions has witnessed a remarkable surge in the production of time series data. Artificial intelligence (AI), particularly the deep learning, has presented promising values in investigating the high-dimension and meaningful significance hidden behind these diagnostic data. In this work, we propose a novel analytics for intelligent nucleic acid amplification tests (NAAT) based on deep learning and paper microfluidics. On-chip amplification data were straightforwardly fed to a deep learning model derived from Transformer neural network. To facilitate the development and deployment of the approach, we conducted a lightweight processing of the Transformer model. Then, the capacity of the model for accurately predicting the reaction trend and end-point value was validated. We also employed ablation experiments to evaluate the effects of various parameters on prediction performance followed by optimizing the model. Then, three clinical datasets including 706 positive and 205 negative samples obtained from Fujian Provincial Hospital were used to verify the generalization of the approach. Without any modification of the model structure and hyperparameters, accuracy, sensitivity, and specificity by the presented approach were 98.28 %, 97.52 % and 99.02 %. Further comparison studies based on the nine different AI algorithms including recurrent neural network and long-short term memory were performed. The presented study holds potential to facilitating routine diagnostic tasks for preventing pandemic and propelling the development of smart portable instruments.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"267 ","pages":"Article 105522"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time series analysis of nucleic acid reactions via a generalized transformer model\",\"authors\":\"Canfeng Liu , Binhui Wang , Hui Dong , Yihan Pan , Jiawen Lin , Jintian Yang , Yihui Tao , Hao Sun\",\"doi\":\"10.1016/j.chemolab.2025.105522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The contemporary landscape of medical diagnostics and therapeutic interventions has witnessed a remarkable surge in the production of time series data. Artificial intelligence (AI), particularly the deep learning, has presented promising values in investigating the high-dimension and meaningful significance hidden behind these diagnostic data. In this work, we propose a novel analytics for intelligent nucleic acid amplification tests (NAAT) based on deep learning and paper microfluidics. On-chip amplification data were straightforwardly fed to a deep learning model derived from Transformer neural network. To facilitate the development and deployment of the approach, we conducted a lightweight processing of the Transformer model. Then, the capacity of the model for accurately predicting the reaction trend and end-point value was validated. We also employed ablation experiments to evaluate the effects of various parameters on prediction performance followed by optimizing the model. Then, three clinical datasets including 706 positive and 205 negative samples obtained from Fujian Provincial Hospital were used to verify the generalization of the approach. Without any modification of the model structure and hyperparameters, accuracy, sensitivity, and specificity by the presented approach were 98.28 %, 97.52 % and 99.02 %. Further comparison studies based on the nine different AI algorithms including recurrent neural network and long-short term memory were performed. The presented study holds potential to facilitating routine diagnostic tasks for preventing pandemic and propelling the development of smart portable instruments.</div></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"267 \",\"pages\":\"Article 105522\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743925002072\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743925002072","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Time series analysis of nucleic acid reactions via a generalized transformer model
The contemporary landscape of medical diagnostics and therapeutic interventions has witnessed a remarkable surge in the production of time series data. Artificial intelligence (AI), particularly the deep learning, has presented promising values in investigating the high-dimension and meaningful significance hidden behind these diagnostic data. In this work, we propose a novel analytics for intelligent nucleic acid amplification tests (NAAT) based on deep learning and paper microfluidics. On-chip amplification data were straightforwardly fed to a deep learning model derived from Transformer neural network. To facilitate the development and deployment of the approach, we conducted a lightweight processing of the Transformer model. Then, the capacity of the model for accurately predicting the reaction trend and end-point value was validated. We also employed ablation experiments to evaluate the effects of various parameters on prediction performance followed by optimizing the model. Then, three clinical datasets including 706 positive and 205 negative samples obtained from Fujian Provincial Hospital were used to verify the generalization of the approach. Without any modification of the model structure and hyperparameters, accuracy, sensitivity, and specificity by the presented approach were 98.28 %, 97.52 % and 99.02 %. Further comparison studies based on the nine different AI algorithms including recurrent neural network and long-short term memory were performed. The presented study holds potential to facilitating routine diagnostic tasks for preventing pandemic and propelling the development of smart portable instruments.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.