用于高质子电导率和低温固体氧化物燃料电池的掺铟BaHfO3电解质氧空位工程

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Zezhong Wang , Ying Li , Wenlong Huang , Jie Zheng , Yongtao Huang
{"title":"用于高质子电导率和低温固体氧化物燃料电池的掺铟BaHfO3电解质氧空位工程","authors":"Zezhong Wang ,&nbsp;Ying Li ,&nbsp;Wenlong Huang ,&nbsp;Jie Zheng ,&nbsp;Yongtao Huang","doi":"10.1016/j.jeurceramsoc.2025.117819","DOIUrl":null,"url":null,"abstract":"<div><div>The development of electrolyte materials with high ionic conductivity at low operating temperatures (400–600 °C) remains a critical challenge for solid oxide fuel cells (SOFCs). Proton-conducting ceramics have emerged as promising candidates due to their low activation energy for proton transport, making them suitable for low-temperature SOFC applications. In this study, a series of BaHf<sub>1-<em>x</em></sub>In<sub><em>x</em></sub>O<sub>3-<em>δ</em></sub> (<em>x</em> = 0, 0.05, 0.10, 0.15, and 0.20) ceramics were synthesized via solid-state reaction. The dominant proton conductivity, accompanied by oxygen ion conduction, was confirmed through defect equilibrium model, concentration cell studies, and H/D isotope experiments. X-ray photoelectron spectroscopy (XPS) revealed that indium doping significantly enhances oxygen vacancy concentration, thereby facilitating proton conduction. Compared to undoped BaHfO<sub>3</sub>, indium doping markedly increased ionic conductivity and reduced the activation energy for grain boundary conduction. The BaHf<sub>0.85</sub>In<sub>0.15</sub>O<sub>2.925</sub> (BHI15) electrolyte exhibited a low (ASR) area-specific ohmic resistance of 0.20 Ω cm<sup>2</sup> and achieved an exceptional power output of 956 mW cm⁻² at 550 °C. These findings underscore the effectiveness of indium doping in enhancing proton conductivity, offering a viable strategy for designing high-performance electrolytes for low-temperature SOFCs.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"46 2","pages":"Article 117819"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indium-doped BaHfO3 electrolytes with oxygen vacancies engineering for high proton conductivity and low-temperature solid oxide fuel cells\",\"authors\":\"Zezhong Wang ,&nbsp;Ying Li ,&nbsp;Wenlong Huang ,&nbsp;Jie Zheng ,&nbsp;Yongtao Huang\",\"doi\":\"10.1016/j.jeurceramsoc.2025.117819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of electrolyte materials with high ionic conductivity at low operating temperatures (400–600 °C) remains a critical challenge for solid oxide fuel cells (SOFCs). Proton-conducting ceramics have emerged as promising candidates due to their low activation energy for proton transport, making them suitable for low-temperature SOFC applications. In this study, a series of BaHf<sub>1-<em>x</em></sub>In<sub><em>x</em></sub>O<sub>3-<em>δ</em></sub> (<em>x</em> = 0, 0.05, 0.10, 0.15, and 0.20) ceramics were synthesized via solid-state reaction. The dominant proton conductivity, accompanied by oxygen ion conduction, was confirmed through defect equilibrium model, concentration cell studies, and H/D isotope experiments. X-ray photoelectron spectroscopy (XPS) revealed that indium doping significantly enhances oxygen vacancy concentration, thereby facilitating proton conduction. Compared to undoped BaHfO<sub>3</sub>, indium doping markedly increased ionic conductivity and reduced the activation energy for grain boundary conduction. The BaHf<sub>0.85</sub>In<sub>0.15</sub>O<sub>2.925</sub> (BHI15) electrolyte exhibited a low (ASR) area-specific ohmic resistance of 0.20 Ω cm<sup>2</sup> and achieved an exceptional power output of 956 mW cm⁻² at 550 °C. These findings underscore the effectiveness of indium doping in enhancing proton conductivity, offering a viable strategy for designing high-performance electrolytes for low-temperature SOFCs.</div></div>\",\"PeriodicalId\":17408,\"journal\":{\"name\":\"Journal of The European Ceramic Society\",\"volume\":\"46 2\",\"pages\":\"Article 117819\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The European Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955221925006405\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221925006405","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

开发在低温(400-600℃)下具有高离子电导率的电解质材料仍然是固体氧化物燃料电池(sofc)面临的关键挑战。质子传导陶瓷由于其质子传输的低活化能而成为有希望的候选者,使其适合低温SOFC应用。本研究通过固相反应合成了一系列BaHf1-xInxO3-δ (x = 0、0.05、0.10、0.15和0.20)陶瓷。通过缺陷平衡模型、浓度池研究和H/D同位素实验,证实了质子电导率占主导地位,并伴有氧离子电导率。x射线光电子能谱(XPS)显示,掺杂铟显著提高了氧空位浓度,从而促进了质子的传导。与未掺杂的bafo3相比,掺杂铟显著提高了离子电导率,降低了晶界导电活化能。BaHf0.85In0.15O2.925 (BHI15)电解质表现出低(ASR)面积比欧姆电阻0.20 Ω cm2,并在550°C时实现了956 mW cm⁻²的卓越输出功率。这些发现强调了铟掺杂在提高质子电导率方面的有效性,为设计低温sofc的高性能电解质提供了可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indium-doped BaHfO3 electrolytes with oxygen vacancies engineering for high proton conductivity and low-temperature solid oxide fuel cells
The development of electrolyte materials with high ionic conductivity at low operating temperatures (400–600 °C) remains a critical challenge for solid oxide fuel cells (SOFCs). Proton-conducting ceramics have emerged as promising candidates due to their low activation energy for proton transport, making them suitable for low-temperature SOFC applications. In this study, a series of BaHf1-xInxO3-δ (x = 0, 0.05, 0.10, 0.15, and 0.20) ceramics were synthesized via solid-state reaction. The dominant proton conductivity, accompanied by oxygen ion conduction, was confirmed through defect equilibrium model, concentration cell studies, and H/D isotope experiments. X-ray photoelectron spectroscopy (XPS) revealed that indium doping significantly enhances oxygen vacancy concentration, thereby facilitating proton conduction. Compared to undoped BaHfO3, indium doping markedly increased ionic conductivity and reduced the activation energy for grain boundary conduction. The BaHf0.85In0.15O2.925 (BHI15) electrolyte exhibited a low (ASR) area-specific ohmic resistance of 0.20 Ω cm2 and achieved an exceptional power output of 956 mW cm⁻² at 550 °C. These findings underscore the effectiveness of indium doping in enhancing proton conductivity, offering a viable strategy for designing high-performance electrolytes for low-temperature SOFCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The European Ceramic Society
Journal of The European Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
10.70
自引率
12.30%
发文量
863
审稿时长
35 days
期刊介绍: The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信