{"title":"基于综合和实测功率分布的图神经网络在配电网中的用户相位识别","authors":"Chandra Sekhar Charan Dande , Nikolaos A. Efkarpidis , Matthias Christen , Mirko Ginocchi , Antonello Monti","doi":"10.1016/j.egyai.2025.100607","DOIUrl":null,"url":null,"abstract":"<div><div>Most distribution system operators may not accurately record or completely maintain the phase connections for the numerous LV customers. Different consumer phase identification (CPI) approaches based on voltages, powers or other measurements are proposed in the literature. Due to the technical challenges in collecting voltage measurements, power measurement based approaches are preferable. Hence, this paper proposes a novel power based CPI methodology applying Graph Neural Networks (GNNs). The CPI methodology generates synthetic transformer power profiles assuming random combinations of phases for the measured load profiles, which are used altogether to train the GNN model. The GNN model is then tested using measured transformer and load power profiles. The performance of the methodology is evaluated in a test low voltage grid of 55 loads under various conditions of Photovoltaic penetration, Photovoltaics under maintenance, measurement errors, unmetered consumption, uncertain grid asset parameters and inaccurate phase connections. Further tests on a real low voltage grid with 111 loads prove the scalability of the methodology. The attained results show that the GNN model can achieve accuracy above 90% in most cases, outperforming various state-of-the-art methods.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"22 ","pages":"Article 100607"},"PeriodicalIF":9.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consumer phase identification in distribution grids using Graph Neural Networks based on synthetic and measured power profiles\",\"authors\":\"Chandra Sekhar Charan Dande , Nikolaos A. Efkarpidis , Matthias Christen , Mirko Ginocchi , Antonello Monti\",\"doi\":\"10.1016/j.egyai.2025.100607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Most distribution system operators may not accurately record or completely maintain the phase connections for the numerous LV customers. Different consumer phase identification (CPI) approaches based on voltages, powers or other measurements are proposed in the literature. Due to the technical challenges in collecting voltage measurements, power measurement based approaches are preferable. Hence, this paper proposes a novel power based CPI methodology applying Graph Neural Networks (GNNs). The CPI methodology generates synthetic transformer power profiles assuming random combinations of phases for the measured load profiles, which are used altogether to train the GNN model. The GNN model is then tested using measured transformer and load power profiles. The performance of the methodology is evaluated in a test low voltage grid of 55 loads under various conditions of Photovoltaic penetration, Photovoltaics under maintenance, measurement errors, unmetered consumption, uncertain grid asset parameters and inaccurate phase connections. Further tests on a real low voltage grid with 111 loads prove the scalability of the methodology. The attained results show that the GNN model can achieve accuracy above 90% in most cases, outperforming various state-of-the-art methods.</div></div>\",\"PeriodicalId\":34138,\"journal\":{\"name\":\"Energy and AI\",\"volume\":\"22 \",\"pages\":\"Article 100607\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666546825001399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825001399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Consumer phase identification in distribution grids using Graph Neural Networks based on synthetic and measured power profiles
Most distribution system operators may not accurately record or completely maintain the phase connections for the numerous LV customers. Different consumer phase identification (CPI) approaches based on voltages, powers or other measurements are proposed in the literature. Due to the technical challenges in collecting voltage measurements, power measurement based approaches are preferable. Hence, this paper proposes a novel power based CPI methodology applying Graph Neural Networks (GNNs). The CPI methodology generates synthetic transformer power profiles assuming random combinations of phases for the measured load profiles, which are used altogether to train the GNN model. The GNN model is then tested using measured transformer and load power profiles. The performance of the methodology is evaluated in a test low voltage grid of 55 loads under various conditions of Photovoltaic penetration, Photovoltaics under maintenance, measurement errors, unmetered consumption, uncertain grid asset parameters and inaccurate phase connections. Further tests on a real low voltage grid with 111 loads prove the scalability of the methodology. The attained results show that the GNN model can achieve accuracy above 90% in most cases, outperforming various state-of-the-art methods.